



## ON 3-STRAND SINGULAR PURE BRAID GROUP

3rd International Conference "Groups and Quandles in Low-Dimensional Topology"

Tatyana Kozlovskaya

Joint work with Valeriy Bardakov



## Artin braid groups

#### Artin(1925)

The braid group  $B_n$ ,  $n \ge 2$ , on n strings can be defined as a group generated by  $\sigma_1, \sigma_2, \ldots, \sigma_{n-1}$  with the defining relations

$$\sigma_{i} \sigma_{j} = \sigma_{j} \sigma_{i}, \quad |i - j| \ge 2.$$

$$\sigma_{i} \sigma_{i+1} \sigma_{i} = \sigma_{i+1} \sigma_{i} \sigma_{i+1}, \quad i = 1, 2, \dots, n-2,$$

$$\begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ \vdots \end{bmatrix} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ \vdots \end{bmatrix} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ \vdots \end{bmatrix} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ \vdots \end{bmatrix} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ \vdots \end{bmatrix} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ \vdots \end{bmatrix} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ \vdots \end{bmatrix} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{bmatrix}$$



#### PURE BRAID GROUP

There is a homomorphism  $\varphi: B_n \to S_n$ ,  $\varphi(\sigma_i) = (i, i+1)$ ,  $i=1,2,\ldots,n-1$ . Its kernel  $Ker(\varphi)$  is called the *pure braid group* and denoted by  $P_n$ .



The group  $P_n$  is generated by  $a_{ij}$ ,  $1 \le i < j \le n$ . These generators can be expressed by the generators of  $B_n$  as follows

$$a_{i,i+1} = \sigma_i^2,$$

$$a_{ij} = \sigma_{j-1} \sigma_{j-2} \dots \sigma_{i+1} \sigma_i^2 \sigma_{i+1}^{-1} \dots \sigma_{j-2}^{-1} \sigma_{i-1}^{-1}, \quad i+1 < j \le n.$$

#### PURE BRAID GROUP

The pure braid group  $P_n$  is defined by the relations (for  $\varepsilon=\pm 1$ )

$$a_{ik}^{-\varepsilon}a_{kj}a_{ik}^{\varepsilon}=(a_{ij}a_{kj})^{\varepsilon}a_{kj}(a_{ij}a_{kj})^{-\varepsilon},$$
 
$$a_{km}^{-\varepsilon}a_{kj}a_{km}^{\varepsilon}=(a_{kj}a_{mj})^{\varepsilon}a_{kj}(a_{kj}a_{mj})^{-\varepsilon}, \text{ при } m< j,$$
 
$$a_{im}^{-\varepsilon}a_{kj}a_{im}^{\varepsilon}=[a_{ij}^{-\varepsilon},a_{mj}^{-\varepsilon}]^{\varepsilon}a_{kj}[a_{ij}^{-\varepsilon},a_{mj}^{-\varepsilon}]^{-\varepsilon}, \text{ при } i< k< m,$$
 
$$a_{im}^{-\varepsilon}a_{kj}a_{im}^{\varepsilon}=a_{kj}, \text{ при } k< i< m< j \text{ или } m< k.$$

#### SINGULAR BRAID GROUP

#### J. C. Baez(1992), J. S. Birman(1993)

The Baez–Birman monoid or the singular braid monoid  $SB_n$  is generated (as a monoid) by elements  $\sigma_i$ ,  $\sigma_i^{-1}$ ,  $\tau_i$ ,  $i=1,2,\ldots,n-1$  and the defining relations:

$$au_i \, au_j = au_j \, au_i, \quad |i-j| \ge 2,$$
  $au_i \, \sigma_j = \sigma_j \, au_i, \quad |i-j| \ge 2,$   $au_i \, \sigma_i = \sigma_i \, au_i, \quad i = 1, 2, \dots, n-1,$   $au_i \, \sigma_{i+1} \, au_i = au_{i+1} \, \sigma_i \, \sigma_{i+1}, \quad i = 1, 2, \dots, n-2,$   $au_{i+1} \, \sigma_i \, au_{i+1} = au_i \, \sigma_{i+1} \, \sigma_i, \quad i = 1, 2, \dots, n-2.$ 

#### SINGULAR BRAID GROUP

R. Fenn, E. Keyman, C. Rourke (1997) proved that the singular braid monoid  $SB_n$  is embedded into the group  $SG_n$  which is called the singular braid group.

$$SB_n \rightarrow SG_n$$

#### Geometric interpretation

The elementary braids  $\sigma_i$  and  $\tau_i$ 

Define the map  $\pi: SG_n \longrightarrow S_n$  of  $SG_n$  onto the symmetric group  $S_n$  on n symbols by actions the on generators

$$\pi(\sigma_i) = \pi(\tau_i) = (i, i+1), \quad i = 1, 2, ..., n-1.$$

The kernel  $ker(\pi)$  of this map is called the *singular pure braid group* and denoted by  $SP_n$ .

 $SP_n$  is a normal subgroup of index n! of  $SG_n$ .

#### REIDEMEISTER-SCHREIER METHOD

The set

$$\Lambda_n = \left\{ \prod_{k=2}^n m_{k,j_k} | 1 \le j_k \le k \right\}, m_{kl} = \rho_{k-1} \, \rho_{k-2} \dots \rho_l, l < k; m_{kk} = 1$$

is a Schreier set of coset representatives of  $SP_n$  in  $SG_n$ .  $\eta: SG_n \longrightarrow \Lambda_n, \ w \in SG_n, \ \overline{w} \in \Lambda_n$ . The element  $w\overline{w}^{-1}$  belongs to  $SP_n$ .

$$S_{\lambda,a} = \lambda a \cdot (\overline{\lambda a})^{-1}$$
, where

 $\lambda$  runs over the set  $\Lambda_n$ , a runs over the set of generators of  $SG_n$ .

#### REWRITING PROCESS

Let us associate to the reduced word

$$u=a_1^{\varepsilon_1}\,a_2^{\varepsilon_2}\dots a_{\nu}^{\varepsilon_{\nu}},\quad \varepsilon_I=\pm 1,\quad a_I\in \{\sigma_1,\sigma_2,\dots,\sigma_{n-1},\tau_1,\tau_2,\dots,\tau_{n-1}\},$$

the word

$$\tau(u) = S_{k_1,a_1}^{\varepsilon_1} S_{k_2,a_2}^{\varepsilon_2} \dots S_{k_{\nu},a_{\nu}}^{\varepsilon_{\nu}}$$

in the generators of  $SP_n$ , where  $k_j$  is a representative of the (j-1)th initial segment of the word u if  $\varepsilon_j=1$  and  $k_j$  is a representative of the jth initial segment of the word u if  $\varepsilon_j=-1$ .

The group  $SP_n$  is defined by relations

$$r_{\mu,\lambda} = \tau(\lambda r_{\mu} \lambda^{-1}), \quad \lambda \in \Lambda_n,$$

where  $r_{ii}$  is the defining relation of  $SG_n$ .

#### CASE n=2.

$$SG_2 = \langle \sigma_1, \tau_1 \mid \sigma_1 \tau_1 = \tau_1 \sigma_1 \rangle \cong \mathbb{Z} \times \mathbb{Z}.$$

The set of coset representatives:

$$\Lambda_{2} = \{1, \sigma_{1}\}.$$

$$S_{\lambda,a} = \lambda a \cdot (\overline{\lambda a})^{-1}, \quad \lambda \in \Lambda_{2}, \quad a \in \{\sigma_{1}, \tau_{1}\}.$$

$$S_{1,\sigma_{1}} = \sigma_{1} \cdot (\overline{\sigma_{1}})^{-1} = \sigma_{1} \cdot \sigma_{1}^{-1} = 1,$$

$$S_{1,\tau_{1}} = \tau_{1} \cdot (\overline{\tau_{1}})^{-1} = \tau_{1} \cdot \sigma_{1}^{-1},$$

$$S_{\sigma_{1},\sigma_{1}} = \sigma_{1}^{2} \cdot \overline{\sigma_{1}^{2}}^{-1} = \sigma_{1}^{2} \cdot 1 = \sigma_{1}^{2},$$

$$S_{\sigma_{1},\tau_{1}} = \sigma_{1}\tau_{1} \cdot (\overline{\sigma_{1}\tau_{1}})^{-1} = \sigma_{1}\tau_{1}.$$

 $SP_2$  is generated by three elements:

$$S_{1,\tau_1} = \tau_1 \sigma_1^{-1}, \quad S_{\sigma_1,\sigma_1} = \sigma_1^2, \quad S_{\sigma_1,\tau_1} = \sigma_1 \tau_1.$$

The element  $a_{12} = \sigma_1^2$  is a generator of the pure braid group  $P_2$ .

#### CASE n=2.

$$\begin{split} r &= \sigma_1 \tau_1 \sigma_1^{-1} \tau_1^{-1} \\ & \qquad \qquad r = S_{1,\sigma_1} S_{\sigma_1,\tau_1} S_{\sigma_1,\sigma_1}^{-1} S_{1,\tau_1}^{-1} = S_{\sigma_1,\tau_1} S_{\sigma_1,\sigma_1}^{-1} S_{1,\tau_1}^{-1} = 1. \\ & \qquad \qquad S_{1,\tau_1} = S_{\sigma_1,\tau_1} S_{\sigma_1,\sigma_1}^{-1}. \\ & \qquad \qquad S_{1,\tau_1} = S_{1,\sigma_1} S_{1,\tau_1} S_{1,\sigma_1}^{-1} S_{1,\sigma_1}^{-1} = S_{1,\sigma_1} S_{1,\tau_1} S_{1,\tau_1}^{-1} = 1. \\ & \qquad \qquad S_{1,\sigma_1} S_{1,\sigma_1} S_{1,\sigma_1} S_{1,\sigma_1} S_{1,\sigma_1}^{-1} = S_{1,\sigma_1} S_{1,\sigma_1} S_{1,\sigma_1}^{-1} = 1. \\ & \qquad \qquad S_{1,\sigma_1} S_{1,\sigma_1}$$

## CASE n=2.

LEMMA. 1)  $SP_2 = \langle a_{12}, b_{12} | a_{12} b_{12} = b_{12} a_{12} \rangle \cong \mathbb{Z} \times \mathbb{Z}$ ; 2)  $SP_2$  is normal in  $SG_2$  and the action of  $SG_2$  on  $SP_2$  is defined by the formulas

$$egin{aligned} a_{12}^{\sigma_1} &= a_{12}, \quad b_{12}^{\sigma_1} &= b_{12}, \ a_{12}^{\tau_1} &= a_{12}, \quad b_{12}^{\tau_1} &= b_{12}. \end{aligned}$$

#### CASE n = 3.

 $SG_3$  is generated by elements

$$\sigma_1, \sigma_2, \tau_1, \tau_2,$$

and is defined by relations

$$\sigma_1 \tau_1 = \tau_1 \sigma_1, \quad \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2, \quad \sigma_2 \tau_2 = \tau_2 \sigma_2,$$

$$\sigma_1 \sigma_2 \tau_1 = \tau_2 \sigma_1 \sigma_2, \quad \sigma_2 \sigma_1 \tau_2 = \tau_1 \sigma_2 \sigma_1.$$

$$\Lambda_3 = \{1, \sigma_1, \sigma_2, \sigma_1 \sigma_2, \sigma_2 \sigma_1, \sigma_1 \sigma_2 \sigma_1\}.$$

The group  $SP_3$  is generated by elements

$$S_{\lambda,a} = \lambda a \cdot (\overline{\lambda a})^{-1}, \quad \lambda \in \Lambda_3, \quad a \in \{\sigma_1, \sigma_2, \tau_1, \tau_2\}.$$

#### CASE n=3.

$$\begin{split} S_{1,\sigma_{1}} &= \sigma_{1} \cdot (\overline{\sigma_{1}})^{-1} = \sigma_{1} \cdot \sigma_{1}^{-1} = 1, \\ S_{1,\sigma_{2}} &= \sigma_{2} \cdot (\overline{\sigma_{2}})^{-1} = \sigma_{2} \cdot \sigma_{2}^{-1} = 1, \\ S_{1,\tau_{1}} &= \tau_{1} \cdot (\overline{\tau_{1}})^{-1} = \tau_{1} \cdot \sigma_{1}^{-1}, \\ S_{1,\tau_{2}} &= \tau_{2} \cdot (\overline{\tau_{2}})^{-1} = \tau_{2} \cdot \sigma_{2}^{-1}, \\ S_{\sigma_{1},\sigma_{1}} &= \sigma_{1}^{2} \cdot \overline{\sigma_{1}^{2}}^{-1} = \sigma_{1}^{2} \cdot 1 = \sigma_{1}^{2}, \\ S_{\sigma_{1},\sigma_{1}} &= \sigma_{1}\sigma_{2} \cdot (\overline{\sigma_{1}\sigma_{2}})^{-1} = 1, \\ S_{\sigma_{1},\tau_{1}} &= \sigma_{1}\tau_{1} \cdot (\overline{\sigma_{1}\tau_{1}})^{-1} = \sigma_{1}\tau_{1}, \\ S_{\sigma_{1},\tau_{2}} &= \sigma_{1}\tau_{2} \cdot (\overline{\sigma_{1}\tau_{2}})^{-1} = \sigma_{1}\tau_{2}\sigma_{2}^{-1}\sigma_{1}^{-1}, \\ S_{\sigma_{2},\sigma_{1}} &= \sigma_{2}\sigma_{1} \cdot (\overline{\sigma_{2}\sigma_{1}})^{-1} = 1, \\ S_{\sigma_{2},\sigma_{2}} &= \sigma_{2}^{2} \cdot \overline{\sigma_{2}^{2}}^{-1} = \sigma_{2}^{2} \cdot 1 = \sigma_{2}^{2}, \\ S_{\sigma_{2},\tau_{1}} &= \sigma_{2}\tau_{1} \cdot (\overline{\sigma_{2}\sigma_{1}})^{-1} = \sigma_{2}\tau_{1}\sigma_{1}^{-1}\sigma_{2}^{-1}, \end{split}$$

#### CASE n=3.

$$S_{\sigma_{2},\tau_{2}} = \sigma_{2}\tau_{2},$$

$$S_{\sigma_{1}\sigma_{2},\sigma_{1}} = \sigma_{1}\sigma_{2}\sigma_{1} \cdot (\sigma_{1}\sigma_{2}\sigma_{1})^{-1} = 1,$$

$$S_{\sigma_{1}\sigma_{2},\sigma_{2}} = \sigma_{1}\sigma_{2}^{2}\sigma_{1}^{-1},$$

$$S_{\sigma_{1}\sigma_{2},\tau_{1}} = \sigma_{1}\sigma_{2}\tau_{1}\sigma_{1}^{-1}\sigma_{2}^{-1}\sigma_{1}^{-1},$$

$$S_{\sigma_{1}\sigma_{2},\tau_{2}} = \sigma_{1}\sigma_{2}\tau_{2}\sigma_{1}^{-1},$$

$$S_{\sigma_{2}\sigma_{1},\sigma_{1}} = \sigma_{2}\sigma_{1}^{2}\sigma_{2}^{-1},$$

$$S_{\sigma_{2}\sigma_{1},\sigma_{1}} = \sigma_{2}\sigma_{1}^{2}\sigma_{2}^{-1},$$

$$S_{\sigma_{2}\sigma_{1},\sigma_{2}} = \sigma_{2}\sigma_{1}\sigma_{2}\sigma_{1}^{-1}\sigma_{2}^{-1}\sigma_{1}^{-1},$$

$$S_{\sigma_{2}\sigma_{1},\tau_{1}} = \sigma_{2}\sigma_{1}\tau_{1}\sigma_{2}^{-1},$$

$$S_{\sigma_{2}\sigma_{1},\tau_{2}} = \sigma_{2}\sigma_{1}\tau_{2}\sigma_{1}^{-1}\sigma_{2}^{-1}\sigma_{1}^{-1},$$

$$S_{\sigma_{1}\sigma_{2}\sigma_{1},\sigma_{1}} = \sigma_{1}\sigma_{2}\sigma_{1}^{2}\sigma_{2}^{-1}\sigma_{1}^{-1},$$

$$S_{\sigma_{1}\sigma_{2}\sigma_{1},\sigma_{2}} = \sigma_{1}\sigma_{2}\sigma_{1}\sigma_{2}\sigma_{1}^{-1}\sigma_{2}^{-1},$$

$$S_{\sigma_{1}\sigma_{2}\sigma_{1},\tau_{1}} = \sigma_{1}\sigma_{2}\sigma_{1}\tau_{2}\sigma_{1}^{-1}\sigma_{2}^{-1}.$$

$$S_{\sigma_{1}\sigma_{2}\sigma_{1},\tau_{1}} = \sigma_{1}\sigma_{2}\sigma_{1}\tau_{1}\sigma_{2}^{-1}\sigma_{1}^{-1},$$

$$S_{\sigma_{1}\sigma_{2}\sigma_{1},\tau_{1}} = \sigma_{1}\sigma_{2}\sigma_{1}\tau_{1}\sigma_{2}^{-1}\sigma_{1}^{-1}.$$

15 / 28

#### CASE n = 3.

**LEMMA**. From relation  $r_1 = \sigma_1 \tau_1 \sigma_1^{-1} \tau_1^{-1}$  follows 6 relations, applying which we can remove generators:

$$S_{1,\tau_1} = S_{\sigma_1,\tau_1} S_{\sigma_1,\sigma_1}^{-1}, \ S_{\sigma_2,\tau_1} = S_{\sigma_2\sigma_1,\tau_1} S_{\sigma_2\sigma_1,\sigma_1}^{-1}, \ S_{\sigma_1\sigma_2,\tau_1} = S_{\sigma_1\sigma_2\sigma_1,\tau_1} S_{\sigma_1\sigma_2\sigma_1,\sigma_1}^{-1},$$

and we get 3 relations:

$$\begin{split} S_{\sigma_1,\sigma_1} S_{\sigma_1,\tau_1} &= S_{\sigma_1,\tau_1} S_{\sigma_1,\sigma_1}, \\ S_{\sigma_2\sigma_1,\tau_1} S_{\sigma_2\sigma_1,\sigma_1} &= S_{\sigma_2\sigma_1,\sigma_1} S_{\sigma_2\sigma_1,\tau_1}, \\ S_{\sigma_2,\sigma_2} S_{\sigma_1\sigma_2\sigma_1,\tau_1} S_{\sigma_2,\sigma_2}^{-1} &= S_{\sigma_1\sigma_2\sigma_1,\tau_1}. \end{split}$$

#### CASE n=3.

LEMMA. From relation  $r_2 = \sigma_1 \sigma_2 \sigma_1 \sigma_2^{-1} \sigma_1^{-1} \sigma_2^{-1}$  follows 6 relations, applying which we can remove 4 generators:

$$S_{\sigma_2\sigma_1,\sigma_2} = 1, \ S_{\sigma_1\sigma_2\sigma_1,\sigma_2} = S_{\sigma_1,\sigma_1}, \ S_{\sigma_1\sigma_2\sigma_1,\sigma_1} = S_{\sigma_2,\sigma_2}, \ S_{\sigma_1\sigma_2,\sigma_2} = S_{\sigma_1,\sigma_1}S_{\sigma_2\sigma_1,\sigma_1}$$

and we get 2 relations:

$$S_{\sigma_1,\sigma_1}S_{\sigma_2\sigma_1,\sigma_1}S_{\sigma_1,\sigma_1}^{-1} = S_{\sigma_2,\sigma_2}^{-1}S_{\sigma_2\sigma_1,\sigma_1}S_{\sigma_2,\sigma_2}$$
$$S_{\sigma_2,\sigma_2}S_{\sigma_1,\sigma_1}S_{\sigma_2\sigma_1,\sigma_1} = S_{\sigma_1,\sigma_1}S_{\sigma_2\sigma_1,\sigma_1}S_{\sigma_2,\sigma_2}$$

COROLLARY. The generators

$$S_{\sigma_1,\sigma_1}=a_{12},\ S_{\sigma_2\sigma_1,\sigma_1}=a_{13},\ S_{\sigma_2,\sigma_2}=a_{23}$$

satisfy relations

$$a_{12}a_{13}a_{12}^{-1} = a_{23}^{-1}a_{13}a_{23}, \ a_{12}a_{23}a_{12}^{-1} = a_{23}^{-1}a_{13}^{-1}a_{23}a_{13}a_{23}.$$

#### CASE n = 3.

LEMMA. From relation  $r_3 = \sigma_2 \tau_2 \sigma_2^{-1} \tau_2^{-1}$  follows 6 relations, applying which we can remove 3 generators:

$$\begin{split} S_{1,\tau_2} &= S_{\sigma_2,\tau_2} S_{\sigma_2,\sigma_2}^{-1}, \quad S_{\sigma_1,\tau_2} = S_{\sigma_1\sigma_2,\tau_2} S_{\sigma_1,\sigma_1} S_{\sigma_2\sigma_1,\sigma_1}^{-1} S_{\sigma_1,\sigma_1}^{-1}, \\ S_{\sigma_2\sigma_1,\tau_2} &= S_{\sigma_1\sigma_2\sigma_1,\tau_2} S_{\sigma_1,\sigma_1}^{-1}, \\ S_{\sigma_2,\sigma_2} S_{\sigma_2,\tau_2} &= S_{\sigma_2,\tau_2} S_{\sigma_2,\sigma_2}. \\ S_{\sigma_1,\sigma_1} S_{\sigma_2\sigma_1,\sigma_1} S_{\sigma_1,\sigma_1}^{-1} \cdot S_{\sigma_1\sigma_2,\tau_2} \cdot S_{\sigma_1,\sigma_1} S_{\sigma_2\sigma_1,\sigma_1}^{-1} S_{\sigma_1,\sigma_1}^{-1} &= S_{\sigma_1\sigma_2,\tau_2} \\ S_{\sigma_1\sigma_2\sigma_1,\tau_2} S_{\sigma_1,\sigma_1} &= S_{\sigma_1,\sigma_1} S_{\sigma_1\sigma_2\sigma_1,\tau_2}. \end{split}$$

## CASE n = 3.

LEMMA. From relation  $r_4 = \sigma_1 \sigma_2 \tau_1 \sigma_2^{-1} \sigma_1^{-1} \tau_2^{-1}$  follows 3 non-trivial relations, applying which we can remove 3 generators:

$$\begin{split} S_{\sigma_1\sigma_2\sigma_1,\tau_1} &= S_{\sigma_2,\tau_2}, \quad S_{\sigma_1\sigma_2,\tau_2} &= S_{\sigma_1,\sigma_1} S_{\sigma_2\sigma_1,\tau_1} S_{\sigma_1,\sigma_1}^{-1}, \\ S_{\sigma_1\sigma_2\sigma_1,\tau_2} &= S_{\sigma_2\sigma_1,\sigma_1} S_{\sigma_2,\sigma_2} S_{\sigma_1,\tau_1} S_{\sigma_2\sigma_1,\sigma_1}^{-1} S_{\sigma_1,\sigma_1}^{-1} S_{\sigma_2,\sigma_2}^{-1} S_{\sigma_1,\sigma_1}. \end{split}$$

## CASE n=3.

#### LEMMA.

From relation  $r_5 = \sigma_2 \sigma_1 \tau_2 \sigma_1^{-1} \sigma_2^{-1} \tau_1^{-1}$  follows relations:

$$(a_{13}a_{23})S_{\sigma_1, au_1}=S_{\sigma_1, au_1}(a_{13}a_{23}),$$
  $S_{\sigma_2\sigma_1, au_1}a_{13}^{-1}=a_{23}a_{12}(S_{\sigma_2\sigma_1, au_1}a_{13}^{-1})a_{12}^{-1}a_{23}^{-1},$   $a_{12}^{-1}S_{\sigma_2, au_2}a_{12}=a_{13}S_{\sigma_2, au_2}a_{13}^{-1},$   $a_{12}S_{\sigma_2\sigma_1, au_1}a_{12}^{-1}=a_{23}^{-1}S_{\sigma_2\sigma_1, au_1}a_{23}.$ 

$$a_{12} = S_{\sigma_1,\sigma_1} = \sigma_1^2, \quad a_{13} = S_{\sigma_2\sigma_1,\sigma_1} = \sigma_2\sigma_1^2\sigma_2^{-1}, \quad a_{23} = S_{\sigma_2,\sigma_2} = \sigma_2^2,$$
  $b_{12} = S_{\sigma_1,\tau_1} = \sigma_1\tau_1, \quad b_{13} = S_{\sigma_2\sigma_1,\tau_1} = \sigma_2\sigma_1\tau_1\sigma_2^{-1}, \quad b_{23} = S_{\sigma_2,\tau_2} = \sigma_2\tau_2.$ 

$$\begin{split} S_{1,\tau_1} &= \tau_1 \cdot \sigma_1^{-1} = b_{12} a_{12}^{-1}, S_{1,\tau_2} = \tau_2 \cdot \sigma_2^{-1} = b_{23} a_{23}^{-1}, \\ S_{\sigma_1,\sigma_1} &= \sigma_1^2 = a_{12}, S_{\sigma_1,\tau_1} = \sigma_1 \tau_1 = b_{12}, \\ S_{\sigma_1,\tau_2} &= \sigma_1 \tau_2 \sigma_2^{-1} \sigma_1^{-1} = a_{23}^{-1} b_{13} a_{13}^{-1} a_{23}, S_{\sigma_2,\sigma_2} = \sigma_2^2 = a_{23}, \\ S_{\sigma_2,\tau_1} &= \sigma_2 \tau_1 \sigma_1^{-1} \sigma_2^{-1} = b_{13} a_{13}^{-1}, S_{\sigma_2,\tau_2} = \sigma_2 \tau_2 = b_{23}, \\ S_{\sigma_1\sigma_2,\sigma_2} &= \sigma_1 \sigma_2^2 \sigma_1^{-1} = a_{23}^{-1} a_{13} a_{23}, S_{\sigma_1\sigma_2,\tau_1} = \sigma_1 \sigma_2 \tau_1 \sigma_1^{-1} \sigma_2^{-1} \sigma_1^{-1} = b_{23} a_{23}^{-1}, \\ S_{\sigma_1\sigma_2,\tau_2} &= \sigma_1 \sigma_2 \tau_2 \sigma_1^{-1} = a_{23}^{-1} b_{13} a_{23}, S_{\sigma_2\sigma_1,\sigma_1} = \sigma_2 \sigma_1^2 \sigma_2^{-1} = a_{13}, \\ S_{\sigma_2\sigma_1,\tau_1} &= \sigma_2 \sigma_1 \tau_1 \sigma_2^{-1} = b_{13}, S_{\sigma_2\sigma_1,\tau_2} = \sigma_2 \sigma_1 \tau_2 \sigma_1^{-1} \sigma_2^{-1} \sigma_1^{-1} = b_{12} a_{12}^{-1}, \\ S_{\sigma_1\sigma_2\sigma_1,\sigma_1} &= \sigma_1 \sigma_2 \sigma_1^2 \sigma_2^{-1} \sigma_1^{-1} = a_{23}, S_{\sigma_1\sigma_2\sigma_1,\sigma_2} = \sigma_1 \sigma_2 \sigma_1 \sigma_2 \sigma_1^{-1} \sigma_2^{-1} = a_{12}, \\ S_{\sigma_1\sigma_2\sigma_1,\tau_1} &= \sigma_1 \sigma_2 \sigma_1 \tau_1 \sigma_2^{-1} \sigma_1^{-1} = b_{23}, S_{\sigma_1\sigma_2\sigma_1,\tau_2} = \sigma_1 \sigma_2 \sigma_1 \tau_2 \sigma_1^{-1} \sigma_2^{-1} = b_{12}. \end{split}$$

#### THEOREM.

The singular pure braid group  $SP_3$  is generated by elements

$$a_{12}, a_{13}, a_{23}, b_{12}, b_{13}, b_{23},$$

and is defined by relations:

$$a_{12}a_{13}a_{12}^{-1} = a_{23}^{-1}a_{13}a_{23}, \quad a_{12}a_{23}a_{12}^{-1} = a_{23}^{-1}a_{13}^{-1}a_{23}a_{13}a_{23},$$

$$a_{12}b_{12} = b_{12}a_{12}$$

$$a_{13}b_{13} = b_{13}a_{13},$$

$$a_{23}b_{23} = b_{23}a_{23},$$

$$b_{12}(a_{13}a_{23})b_{12}^{-1} = a_{13}a_{23},$$

$$a_{12}b_{13}a_{12}^{-1} = a_{23}^{-1}b_{13}a_{23},$$

$$a_{12}b_{23}a_{12}^{-1} = a_{23}^{-1}a_{13}^{-1}b_{23}a_{13}a_{23}.$$

#### COROLLARY.

$$\begin{split} &a_{12}^{-1}a_{13}a_{12}=a_{13}a_{23}a_{13}a_{23}^{-1}a_{13}^{-1}, \quad a_{12}^{-1}a_{23}a_{12}=a_{13}a_{23}a_{13}^{-1}, \\ &a_{12}^{-1}b_{13}a_{12}=a_{13}a_{23}b_{13}a_{23}^{-1}a_{13}^{-1}, \quad a_{12}^{-1}b_{23}a_{12}=a_{13}b_{23}a_{13}^{-1}. \end{split}$$

PROPOSITION. Generators of  $SG_3$  act on the generators of  $SP_3$  by the rules:

- action of 
$$\sigma_1$$
:  $a_{12}^{\sigma_1} = a_{12}$ ,  $a_{13}^{\sigma_1} = a_{13}a_{23}a_{13}^{-1}$ ,  $a_{23}^{\sigma_1} = a_{13}$ ;

$$b_{12}^{\sigma_1}=b_{12},\quad b_{13}^{\sigma_1}=a_{13}b_{23}a_{13}^{-1},\quad b_{23}^{\sigma_1}=b_{13};$$

- action of 
$$\sigma_2$$
:  $a_{12}^{\sigma_2} = a_{23}^{-1} a_{13} a_{23}$ ,  $a_{13}^{\sigma_2} = a_{12}$ ,  $a_{23}^{\sigma_2} = a_{23}$ ;

$$b_{12}^{\sigma_2} = a_{23}^{-1}b_{13}a_{23}, \quad b_{13}^{\sigma_2} = b_{12}, \quad b_{23}^{\sigma_2} = b_{23};$$

- action of 
$$\tau_1$$
:  $a_{12}^{\tau_1} = a_{12}$ ,  $a_{13}^{\tau_1} = b_{12}^{-1} a_{23} b_{12}$ ,  $a_{23}^{\tau_1} = b_{12}^{-1} a_{23}^{-1} a_{13} a_{23} b_{12}$ ,

$$b_{12}^{\tau_1} = b_{12}, \quad b_{13}^{\tau_1} = b_{12}^{-1}b_{23}b_{12}, \quad b_{23}^{\tau_1} = b_{12}^{-1}a_{12}b_{13}a_{12}^{-1}b_{12},$$

-action of 
$$\tau_2$$
:  $a_{12}^{\tau_2}=b_{23}^{-1}a_{13}b_{23}, \quad a_{13}^{\tau_2}=b_{23}^{-1}a_{23}a_{12}a_{23}^{-1}b_{23}, \quad a_{23}^{\tau_2}=a_{23},$ 

$$b_{12}^{\tau_2} = b_{23}^{-1}b_{13}b_{23}, \quad b_{13}^{\tau_2} = b_{23}^{-1}a_{23}b_{12}a_{23}^{-1}b_{23}, \quad b_{23}^{\tau_2} = b_{23}.$$

THEOREM. 1)  $SP_3 = \widetilde{V}_3 \setminus \mathbb{Z}$ , where  $\mathbb{Z} = \langle a_{12} \rangle$ ; 2)  $\widetilde{V}_3$  has a presentation

$$\widetilde{V}_3 = \langle a_{13}, a_{23}, b_{13}, b_{23}, b_{12} \mid \mid [a_{13}, b_{13}] = [a_{23}, b_{23}] = [a_{13}a_{23}, b_{12}] = 1 \rangle$$

and is an HNN-extension with base group  $V_3$ , stable letter  $b_{12}$  and associated subgroups  $A \cong B = \langle a_{13}a_{23} \rangle$  and identity isomorphism  $A \to B$ :

$$\widetilde{V}_3 = \langle V_3, b_{12} \mid \mathit{rel}(V_3), \quad b_{12}^{-1}(a_{13}a_{23})b_{12} = a_{13}a_{23} \rangle,$$

where  $rel(V_3)$  is the set of relations in  $V_3$ .

3) 
$$V_3 = \langle a_{13}, a_{23}, b_{13}, b_{23} \mid | [a_{13}, b_{13}] = [a_{23}, b_{23}] = 1 \rangle \cong \mathbb{Z}^2 * \mathbb{Z}^2$$
.

QUESTION. Is it true that  $Z(SG_n)$  is a direct factor in  $SP_n$ ?

THEOREM. The singular pure braid group  $SP_3$  is generated by elements

$$\delta$$
,  $a_{13}$ ,  $a_{23}$ ,  $b_{12}$ ,  $b_{13}$ ,  $b_{23}$ ,

and is defined by relations:

$$\delta b_{12} = b_{12}\delta, \quad \delta a_{13} = a_{13}\delta, \quad \delta a_{23} = a_{23}\delta, \quad \delta b_{13} = b_{13}\delta, \quad \delta b_{23} = b_{23}\delta.$$

$$a_{13}b_{13} = b_{13}a_{13}, \quad a_{23}b_{23} = b_{23}a_{23}, \quad b_{12}(a_{13}a_{23})b_{12}^{-1} = a_{13}a_{23}.$$

COROLLARY. SP<sub>3</sub> is the direct product

$$SP_3 = Z \times \widetilde{V}_3,$$

where  $Z = \langle \delta \rangle$  is the center of  $SP_3$  and  $\widetilde{V}_3 = \langle a_{13}, a_{23}, b_{12}, b_{13}, b_{23} \rangle$ .

# THANK YOU