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1. Polyhedral products

K a simplicial complex on the set [m] = {1,2,3, . . . ,m}, ∅ ∈ K.
I = {i1, . . . , ik} ∈ K a simplex.

(X ,A) = {(X1,A1), . . . , (Xm,Am)} a sequence of pairs of spaces,
Ai ⊂ Xi .

Given I = {i1, . . . , ik} ⊂ [m], set

(X ,A)I = Y1 × · · · × Ym where Yi =

{
Xi if i ∈ I,
Ai if i /∈ I.
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1. Polyhedral products

The K-polyhedral product of (X ,A) is

(X ,A)K :=
∪
I∈K

(X ,A)I =
∪
I∈K

(∏
i∈I

Xi ×
∏
j /∈I

Aj

)
,

where the union is taken inside X1 × · · · × Xm.

Notation: (X ,A)K := (X ,A)K when all (Xi ,Ai) = (X ,A);

XK := (X ,pt)K, XK := (X ,pt)K.
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Example

Let (X ,A) = (S1,pt), where S1 is a circle. Then

(S1)K =
∪
I∈K

(S1)I ⊂ (S1)m.

When K = {∅, {1}, . . . , {m}} (m disjoint points), the polyhedral
product (S1)K is the wedge (S1)∨m of m circles.

When K consists of all proper subsets of [m] (the boundary ∂∆m−1 of
an (m − 1)-dimensional simplex), (S1)K is the fat wedge of m circles; it
is obtained by removing the top-dimensional cell from the
m-torus (S1)m.

For a general K on m vertices, (S1)∨m ⊂ (S1)K ⊂ (S1)m.
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Example
Let (X ,A) = (R,Z). Then

LK := (R,Z)K =
∪
I∈K

(R,Z)I ⊂ Rm.

When K consists of m disjoint points, LK is a grid in Rm consisting of
all lines parallel to one of the coordinate axis and passing though
integer points.

When K = ∂∆m−1, the complex LK is the union of all integer
hyperplanes parallel to coordinate hyperplanes.
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Example
Let (X ,A) = (RP∞,pt), where RP∞ = BZ2. Then

(RP∞)K =
∪
I∈K

(RP∞)I ⊂ (RP∞)m.

Example

Let (X ,A) = (D1,S0), where D1 = [−1,1] and S0 = {−1,1}. The real
moment-angle complex is

RK := (D1,S0)K =
∪
I∈K

(D1,S0)I .

It is a cubic subcomplex in the m-cube (D1)m = [−1,1]m.

When K consists of m disjoint points, RK is the 1-dimensional skeleton
of the cube [−1,1]m. When K = ∂∆m−1, RK is the boundary of the
cube [−1,1]m. Also, RK is a topological manifold when |K| is a sphere.
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The four polyhedral products above are related by the two homotopy
fibrations

(R,Z)K = LK −→ (S1)K −→ (S1)m,

(D1,S0)K = RK −→ (RP∞)K −→ (RP∞)m.
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Using the categorical language, the polyhedral power XK can be
defined as the colimit of spaces X I =

∏
i∈I Xi over the faces I ∈ K.

There is a similar construction of discrete groups, known as the graph
product.
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2. Graph products

Let G = (G1, . . . ,Gm) a sequence of m discrete groups, Gi ̸= {1}.

K a simplicial complex on [m] = {1,2, . . . ,m}.

Definition
The graph product of the groups G1, . . . ,Gm is

GK :=
m

⋆
k=1

Gk
/
(gigj = gjgi for gi ∈ Gi , gj ∈ Gj , {i , j} ∈ K),

where⋆m
k=1 Gk denotes the free product of the groups Gk .

The graph product GK depends only on the 1-skeleton (graph) of K.
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Example

Let Gi = Z. Then GK is the right-angled Artin group

RAK = F (g1, . . . , gm)
/
(gigj = gjgi for {i , j} ∈ K),

where F (g1, . . . , gm) is a free group with m generators.

When K is a full simplex, we have RAK = Zm. When K is m points, we
obtain a free group of rank m.

Example

Let Gi = Z2. Then GK is the right-angled Coxeter group

RCK = F (g1, . . . , gm)
/
(g2

i = 1, gigj = gjgi for {i , j} ∈ K).
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3. Classifying spaces

The homotopy fibrations LK → (S1)K → (S1)m and
RK → (RP∞)K → (RP∞)m are generalised as follows.

Proposition
There is a homotopy fibration

(EG,G)K −→ (BG)K −→
m∏

k=1

BGk ,

where BG = {BG1, . . . ,BGm} is the sequence of classifying spaces,
and EG = {EG1, . . . ,EGm} the sequence of the universal Gi -spaces.
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A missing face (a minimal non-face) of K is a subset I ⊂ [m] such that
I /∈ K, but J ∈ K for each J ( I.

K a flag complex if each of its missing faces consists of two vertices.
Equivalently, K is flag if any set of vertices of K which are pairwise
connected by edges spans a simplex.

Every flag complex K is determined by its 1-skeleton K1.
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Theorem
Let GK be a graph product group.

1 π1((BG)K) ∼= GK.
2 Both spaces (BG)K and (EG,G)K are aspherical if and only if K is

flag. Hence, B(GK) = (BG)K whenever K is flag.
3 πi((BG)K) ∼= πi((EG,G)K) for i > 2.
4 π1((EG,G)K) is isomorphic to the kernel of the canonical

projection GK →
∏m

k=1 Gk .
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Specialising to the cases Gk = Z and Gk = Z2 respectively we obtain:

Corollary
Let RAK be a right-angled Artin group.

1 π1((S1)K) ∼= RAK.
2 Both (S1)K and LK = (R,Z)K are aspherical iff K is flag.
3 πi((S1)K) ∼= πi(LK) for i > 2.
4 π1(LK) is isomorphic to the commutator subgroup RA′

K.

Corollary
Let RCK be a right-angled Coxeter group.

1 π1((RP∞)K) ∼= RCK.
2 Both (RP∞)K and RK = (D1,S0)K are aspherical iff K is flag.
3 πi((RP∞)K) ∼= πi(RK) for i > 2.
4 π1(RK) is isomorphic to the commutator subgroup RC′

K.
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Example
Let K be an m-cycle (the boundary of an m-gon).
A simple argument with Euler characteristic shows that RK is
homeomorphic to a closed orientable surface of genus
(m − 4)2m−3 + 1.
(This observation goes back to a 1938 work of Coxeter.)

Therefore, the commutator subgroup of the corresponding right-angled
Coxeter group RCK is a surface group.

Similarly, when |K| ∼= S2 (which is equivalent to K being the boundary
of a 3-dimensional simplicial polytope), RK is a 3-dimensional
manifold. Therefore, the commutator subgroup of the corresponding
RCK is a 3-manifold group.
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4. The structure of the commutator subgroups

We have

Ker
(

GK →
m∏

k=1

Gk

)
= π1((EG,G)K).

In the case of right-angled Artin or Coxeter groups (or when each Gk is
abelian), the group above is the commutator subgroup (GK)

′.

The next goal is to study the group π1((EG,G)K), identify the class of
K for which this group is free, and describe a generator set.

A graph Γ is called chordal (in other terminology, triangulated) if each
of its cycles with > 4 vertices has a chord.

By a result of Fulkerson–Gross, a graph is chordal if and only if its
vertices can be ordered in such a way that, for each vertex i , the lesser
neighbours of i form a complete subgraph.
(A perfect elimination order.)
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Theorem (Panov–V)
The following conditions are equivalent:

1 Ker(GK →
∏m

k=1 Gk ) is a free group;
2 (EG,G)K is homotopy equivalent to a wedge of circles;
3 K1 is a chordal graph.

Proof

(2)⇒(1) Because Ker
(

GK →
∏m

k=1 Gk

)
= π1((EG,G)K).

(3)⇒(2) Use induction and perfect elimination order.

(1)⇒(3) Assume that K1 is not chordal. Then, for each chordless cycle
of length > 4, one can find a subgroup in Ker(GK →

∏m
k=1 Gk ) which is

a surface group. Hence, Ker(GK →
∏m

k=1 Gk ) is not a free group.
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2 (EG,G)K is homotopy equivalent to a wedge of circles;
3 K1 is a chordal graph.

Proof

(2)⇒(1) Because Ker
(

GK →
∏m

k=1 Gk

)
= π1((EG,G)K).

(3)⇒(2) Use induction and perfect elimination order.

(1)⇒(3) Assume that K1 is not chordal. Then, for each chordless cycle
of length > 4, one can find a subgroup in Ker(GK →

∏m
k=1 Gk ) which is

a surface group. Hence, Ker(GK →
∏m

k=1 Gk ) is not a free group.
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Corollary
Let RAK and RCK be the right-angled Artin and Coxeter groups
corresponding to a simplicial complex K.
(a) The commutator subgroup RA′

K is free if and only if K1 is a
chordal graph.

(b) The commutator subgroup RC′
K is free if and only if K1 is a

chordal graph.

Part (a) is the result of Servatius, Droms and Servatius.

The difference between (a) and (b) is that the commutator subgroup
RA′

K is infinitely generated, unless RAK = Zm, while the commutator
subgroup RC′

K is finitely generated. We elaborate on this in the next
theorem.
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Let (g,h) = g−1h−1gh denote the group commutator of g,h.

Theorem (Panov–V)
The commutator subgroup RC′

K has a finite minimal generator set
consisting of

∑
J⊂[m] rank H̃0(KJ) iterated commutators

(gj ,gi), (gk1 , (gj ,gi)), . . . , (gk1 , (gk2 , · · · (gkm−2 , (gj ,gi)) · · · )),

where k1 < k2 < · · · < kℓ−2 < j > i , ks ̸= i for any s, and i is the
smallest vertex in a connected component not containing j of the
subcomplex K{k1,...,kℓ−2,j,i}.

Idea of proof
First consider the case K = m points. Then RK is the 1-skeleton of an
m-cube and RC′

K = π1(RK) is a free group of rank
∑m

ℓ=2(ℓ− 1)
(m
ℓ

)
. It

agrees with the total number of nested commutators in the list.

Then eliminate the extra nested commutators using the commutation
relations (gi ,gj) = 1 for {i , j} ∈ K.
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Idea of proof
To see that the given generating set is minimal, argue as follows. The
first homology group H1(RK) is RC′

K/RC′′
K. On the other hand,

H1(RK) ∼=
∑

J⊂[m]

H̃0(KJ).

Hence, the number of generators in the abelian group
H1(RK) ∼= RC′

K/RC′′
K is

∑
J⊂[m] rank H̃0(KJ), and the latter number

agrees with the number of iterated commutators in the generator set
for RC′

K constructed above.
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Example

Let K = r rr1 2

3 r4

Then the commutator subgroup RC′
K is free with the following basis:

(g3,g1), (g4,g1), (g4,g2), (g4,g3),

(g2, (g4,g1)), (g3, (g4,g1)), (g1, (g4,g3)), (g3, (g4,g2)),

(g2, (g3, (g4,g1))).

Example
Let K be an m-cycle with m > 4 vertices.
Then K1 is not a chordal graph, so the group RC′

K is not free.

In fact, RK is an orientable surface of genus (m − 4)2m−3 + 1, so
RC′

K
∼= π1(RK) is a one-relator group.
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The are similar results of Grbic, Panov, Theriault and Wu describing
the commutator subalgebra of the graded Lie algebra given by

LK = FL⟨u1, . . . , um⟩
/(

[ui ,ui ] = 0, [ui ,uj ] = 0 for {i , j} ∈ K
)
,

where FL⟨u1, . . . , um⟩ is the free graded Lie algebra on generators ui of
degree one, and [a,b] = −(−1)|a||b|[b,a] denotes the graded Lie
bracket.

The commutator subalgebra is the kernel of the Lie algebra
homomorphism LK → CL⟨u1, . . . , um⟩ to the commutative (trivial) Lie
algebra.

The graded Lie algebra LK is a graph product similar to the
right-angled Coxeter group RCK.

It has a similar colimit decomposition, with each Gi = Z2 replaced by
the trivial Lie algebra CL⟨u⟩ = FL⟨u⟩/([u,u] = 0) and the colimit taken
in the category of graded Lie algebras.
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Thank you for you attention!
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