Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups joint work with Taras Panov

Yakov Veryovkin

Moscow State University

International Conference «Groups and quandles in low-dimensional topology»

Tomsk State University, June 26 - 27, 2018

 \mathcal{K} a simplicial complex on the set $[m] = \{1, 2, 3, ..., m\}, \emptyset \in \mathcal{K}.$ $I = \{i_1, ..., i_k\} \in \mathcal{K}$ a simplex.

 \mathcal{K} a simplicial complex on the set $[m] = \{1, 2, 3, ..., m\}, \emptyset \in \mathcal{K}.$ $I = \{i_1, ..., i_k\} \in \mathcal{K}$ a simplex.

 $(X, A) = \{(X_1, A_1), \dots, (X_m, A_m)\}$ a sequence of pairs of spaces, $A_i \subset X_i$.

 \mathcal{K} a simplicial complex on the set $[m] = \{1, 2, 3, ..., m\}, \emptyset \in \mathcal{K}.$ $I = \{i_1, ..., i_k\} \in \mathcal{K}$ a simplex.

 $(\mathbf{X}, \mathbf{A}) = \{(X_1, A_1), \dots, (X_m, A_m)\}$ a sequence of pairs of spaces, $A_i \subset X_i$.

Given
$$I = \{i_1, \dots, i_k\} \subset [m]$$
, set
 $(\boldsymbol{X}, \boldsymbol{A})^I = Y_1 \times \dots \times Y_m$ where $Y_i = \begin{cases} X_i & \text{if } i \in I, \\ A_i & \text{if } i \notin I. \end{cases}$

The \mathcal{K} -polyhedral product of (\mathbf{X}, \mathbf{A}) is

$$(\boldsymbol{X}, \boldsymbol{A})^{\mathcal{K}} := \bigcup_{l \in \mathcal{K}} (\boldsymbol{X}, \boldsymbol{A})^{l} = \bigcup_{l \in \mathcal{K}} \left(\prod_{i \in I} X_{i} \times \prod_{j \notin I} A_{j} \right)$$

where the union is taken inside $X_1 \times \cdots \times X_m$.

Notation: $(X, A)^{\mathcal{K}} := (X, A)^{\mathcal{K}}$ when all $(X_i, A_i) = (X, A)$;

 $\boldsymbol{X}^{\mathcal{K}} := (\boldsymbol{X}, pt)^{\mathcal{K}}, \, \boldsymbol{X}^{\mathcal{K}} := (\boldsymbol{X}, pt)^{\mathcal{K}}.$

Let $(X, A) = (S^1, pt)$, where S^1 is a circle. Then

$$(\mathcal{S}^1)^{\mathcal{K}} = \bigcup_{I \in \mathcal{K}} (\mathcal{S}^1)^I \subset (\mathcal{S}^1)^m.$$

イロト イヨト イヨト イヨト

Let $(X, A) = (S^1, pt)$, where S^1 is a circle. Then

$$(\mathcal{S}^1)^{\mathcal{K}} = \bigcup_{l \in \mathcal{K}} (\mathcal{S}^1)^l \subset (\mathcal{S}^1)^m.$$

When $\mathcal{K} = \{ \varnothing, \{1\}, \dots, \{m\} \}$ (*m* disjoint points), the polyhedral product $(S^1)^{\mathcal{K}}$ is the wedge $(S^1)^{\vee m}$ of *m* circles.

Let $(X, A) = (S^1, pt)$, where S^1 is a circle. Then

$$(\mathcal{S}^1)^{\mathcal{K}} = \bigcup_{l \in \mathcal{K}} (\mathcal{S}^1)^l \subset (\mathcal{S}^1)^m.$$

When $\mathcal{K} = \{\emptyset, \{1\}, \dots, \{m\}\}$ (*m* disjoint points), the polyhedral product $(S^1)^{\mathcal{K}}$ is the wedge $(S^1)^{\vee m}$ of *m* circles.

When \mathcal{K} consists of all proper subsets of [m] (the boundary $\partial \Delta^{m-1}$ of an (m-1)-dimensional simplex), $(S^1)^{\mathcal{K}}$ is the fat wedge of m circles; it is obtained by removing the top-dimensional cell from the m-torus $(S^1)^m$.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let $(X, A) = (S^1, pt)$, where S^1 is a circle. Then

$$(\mathcal{S}^1)^{\mathcal{K}} = \bigcup_{l \in \mathcal{K}} (\mathcal{S}^1)^l \subset (\mathcal{S}^1)^m.$$

When $\mathcal{K} = \{\emptyset, \{1\}, \dots, \{m\}\}$ (*m* disjoint points), the polyhedral product $(S^1)^{\mathcal{K}}$ is the wedge $(S^1)^{\vee m}$ of *m* circles.

When \mathcal{K} consists of all proper subsets of [m] (the boundary $\partial \Delta^{m-1}$ of an (m-1)-dimensional simplex), $(S^1)^{\mathcal{K}}$ is the fat wedge of *m* circles; it is obtained by removing the top-dimensional cell from the *m*-torus $(S^1)^m$.

For a general \mathcal{K} on *m* vertices, $(S^1)^{\vee m} \subset (S^1)^{\mathcal{K}} \subset (S^1)^m$.

• • • • • • • • • • • •

Let $(X, A) = (\mathbb{R}, \mathbb{Z})$. Then

$$\mathcal{L}_{\mathcal{K}} := (\mathbb{R}, \mathbb{Z})^{\mathcal{K}} = \bigcup_{l \in \mathcal{K}} (\mathbb{R}, \mathbb{Z})^l \subset \mathbb{R}^m.$$

イロト イヨト イヨト イヨト

Let $(X, A) = (\mathbb{R}, \mathbb{Z})$. Then

$$\mathcal{L}_{\mathcal{K}} := (\mathbb{R}, \mathbb{Z})^{\mathcal{K}} = \bigcup_{l \in \mathcal{K}} (\mathbb{R}, \mathbb{Z})^l \subset \mathbb{R}^m.$$

When \mathcal{K} consists of *m* disjoint points, $\mathcal{L}_{\mathcal{K}}$ is a grid in \mathbb{R}^m consisting of all lines parallel to one of the coordinate axis and passing though integer points.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let $(X, A) = (\mathbb{R}, \mathbb{Z})$. Then

$$\mathcal{L}_{\mathcal{K}} := (\mathbb{R}, \mathbb{Z})^{\mathcal{K}} = \bigcup_{l \in \mathcal{K}} (\mathbb{R}, \mathbb{Z})^l \subset \mathbb{R}^m.$$

When \mathcal{K} consists of *m* disjoint points, $\mathcal{L}_{\mathcal{K}}$ is a grid in \mathbb{R}^m consisting of all lines parallel to one of the coordinate axis and passing though integer points.

When $\mathcal{K} = \partial \Delta^{m-1}$, the complex $\mathcal{L}_{\mathcal{K}}$ is the union of all integer hyperplanes parallel to coordinate hyperplanes.

Let $(X, A) = (\mathbb{R}P^{\infty}, pt)$, where $\mathbb{R}P^{\infty} = B\mathbb{Z}_2$. Then

$$(\mathbb{R}P^{\infty})^{\mathcal{K}} = \bigcup_{I \in \mathcal{K}} (\mathbb{R}P^{\infty})^{I} \subset (\mathbb{R}P^{\infty})^{m}.$$

イロト イ団ト イヨト イヨト

Let $(X, A) = (\mathbb{R}P^{\infty}, pt)$, where $\mathbb{R}P^{\infty} = B\mathbb{Z}_2$. Then

$$(\mathbb{R}P^{\infty})^{\mathcal{K}} = \bigcup_{l \in \mathcal{K}} (\mathbb{R}P^{\infty})^{l} \subset (\mathbb{R}P^{\infty})^{m}.$$

Example

Let $(X, A) = (D^1, S^0)$, where $D^1 = [-1, 1]$ and $S^0 = \{-1, 1\}$. The real moment-angle complex is

$$\mathcal{R}_{\mathcal{K}} := (D^1, S^0)^{\mathcal{K}} = \bigcup_{l \in \mathcal{K}} (D^1, S^0)^l.$$

Let $(X, A) = (\mathbb{R}P^{\infty}, pt)$, where $\mathbb{R}P^{\infty} = B\mathbb{Z}_2$. Then

$$(\mathbb{R}P^{\infty})^{\mathcal{K}} = \bigcup_{l \in \mathcal{K}} (\mathbb{R}P^{\infty})^{l} \subset (\mathbb{R}P^{\infty})^{m}.$$

Example

Let $(X, A) = (D^1, S^0)$, where $D^1 = [-1, 1]$ and $S^0 = \{-1, 1\}$. The real moment-angle complex is

$$\mathcal{R}_{\mathcal{K}} := (D^1, S^0)^{\mathcal{K}} = \bigcup_{l \in \mathcal{K}} (D^1, S^0)^l.$$

It is a cubic subcomplex in the *m*-cube $(D^1)^m = [-1, 1]^m$.

Let $(X, A) = (\mathbb{R}P^{\infty}, pt)$, where $\mathbb{R}P^{\infty} = B\mathbb{Z}_2$. Then

$$(\mathbb{R}P^{\infty})^{\mathcal{K}} = \bigcup_{l \in \mathcal{K}} (\mathbb{R}P^{\infty})^{l} \subset (\mathbb{R}P^{\infty})^{m}.$$

Example

Let $(X, A) = (D^1, S^0)$, where $D^1 = [-1, 1]$ and $S^0 = \{-1, 1\}$. The real moment-angle complex is

$$\mathcal{R}_{\mathcal{K}} := (D^1, S^0)^{\mathcal{K}} = \bigcup_{l \in \mathcal{K}} (D^1, S^0)^l.$$

It is a cubic subcomplex in the *m*-cube $(D^1)^m = [-1, 1]^m$.

When \mathcal{K} consists of *m* disjoint points, $\mathcal{R}_{\mathcal{K}}$ is the 1-dimensional skeleton of the cube $[-1, 1]^m$. When $\mathcal{K} = \partial \Delta^{m-1}$, $\mathcal{R}_{\mathcal{K}}$ is the boundary of the cube $[-1, 1]^m$. Also, $\mathcal{R}_{\mathcal{K}}$ is a topological manifold when $|\mathcal{K}|$ is a sphere.

The four polyhedral products above are related by the two homotopy fibrations

$$(\mathbb{R},\mathbb{Z})^{\mathcal{K}} = \mathcal{L}_{\mathcal{K}} \longrightarrow (S^{1})^{\mathcal{K}} \longrightarrow (S^{1})^{m},$$

 $(D^{1}, S^{0})^{\mathcal{K}} = \mathcal{R}_{\mathcal{K}} \longrightarrow (\mathbb{R}P^{\infty})^{\mathcal{K}} \longrightarrow (\mathbb{R}P^{\infty})^{m}.$

Using the categorical language, the polyhedral power $\mathbf{X}^{\mathcal{K}}$ can be defined as the colimit of spaces $\mathbf{X}^{I} = \prod_{i \in I} X_{i}$ over the faces $I \in \mathcal{K}$.

Using the categorical language, the polyhedral power $\mathbf{X}^{\mathcal{K}}$ can be defined as the colimit of spaces $\mathbf{X}^{I} = \prod_{i \in I} X_{i}$ over the faces $I \in \mathcal{K}$.

There is a similar construction of discrete groups, known as the graph product.

2. Graph products

Let $\mathbf{G} = (G_1, \dots, G_m)$ a sequence of *m* discrete groups, $G_i \neq \{1\}$. \mathcal{K} a simplicial complex on $[m] = \{1, 2, \dots, m\}$.

Let $\mathbf{G} = (G_1, \dots, G_m)$ a sequence of *m* discrete groups, $G_i \neq \{1\}$. \mathcal{K} a simplicial complex on $[m] = \{1, 2, \dots, m\}$.

Definition

The graph product of the groups G_1, \ldots, G_m is

$$oldsymbol{G}^{\mathcal{K}}:=igstar{m}{k=1}{m}G_kig/(g_ig_j=g_jg_i ext{ for } g_i\in G_i,\ g_j\in G_j,\ \{i,j\}\in \mathcal{K}),$$

where $\bigstar_{k=1}^{m} G_k$ denotes the free product of the groups G_k .

Let $\mathbf{G} = (G_1, \dots, G_m)$ a sequence of *m* discrete groups, $G_i \neq \{1\}$. \mathcal{K} a simplicial complex on $[m] = \{1, 2, \dots, m\}$.

Definition

The graph product of the groups G_1, \ldots, G_m is

$$oldsymbol{G}^{\mathcal{K}}:=igstacksymbol{\mathcal{K}}_{k=1}^m oldsymbol{G}_k/(oldsymbol{g}_ioldsymbol{g}_j=oldsymbol{g}_joldsymbol{g}_i ext{ for }oldsymbol{g}_i\inoldsymbol{G}_i, \ oldsymbol{g}_j\inoldsymbol{G}_j, \ \{i,j\}\in\mathcal{K}),$$

where $\bigstar_{k=1}^{m} G_k$ denotes the free product of the groups G_k .

The graph product $\mathbf{G}^{\mathcal{K}}$ depends only on the 1-skeleton (graph) of \mathcal{K} .

<ロト < 回 > < 回 > < 三 > < 三 > 三 三

Let $G_i = \mathbb{Z}$. Then $\mathbf{G}^{\mathcal{K}}$ is the right-angled Artin group

$$\mathsf{RA}_{\mathcal{K}} = \mathsf{F}(g_1, \ldots, g_m) / (g_i g_j = g_j g_i ext{ for } \{i, j\} \in \mathcal{K}),$$

where $F(g_1, \ldots, g_m)$ is a free group with *m* generators.

• • • • • • • • • • •

Let $G_i = \mathbb{Z}$. Then $\mathbf{G}^{\mathcal{K}}$ is the right-angled Artin group

$$RA_{\mathcal{K}} = F(g_1, \ldots, g_m) / (g_i g_j = g_j g_i \text{ for } \{i, j\} \in \mathcal{K}),$$

where $F(g_1, \ldots, g_m)$ is a free group with *m* generators.

When \mathcal{K} is a full simplex, we have $RA_{\mathcal{K}} = \mathbb{Z}^m$. When \mathcal{K} is *m* points, we obtain a free group of rank *m*.

Let $G_i = \mathbb{Z}$. Then $\mathbf{G}^{\mathcal{K}}$ is the right-angled Artin group

$$RA_{\mathcal{K}} = F(g_1, \ldots, g_m) / (g_i g_j = g_j g_i \text{ for } \{i, j\} \in \mathcal{K}),$$

where $F(g_1, \ldots, g_m)$ is a free group with *m* generators.

When \mathcal{K} is a full simplex, we have $RA_{\mathcal{K}} = \mathbb{Z}^m$. When \mathcal{K} is *m* points, we obtain a free group of rank *m*.

Example

Let $G_i = \mathbb{Z}_2$. Then **G**^{\mathcal{K}} is the right-angled Coxeter group

$$RC_{\mathcal{K}} = F(g_1, \ldots, g_m) / (g_i^2 = 1, \ g_i g_j = g_j g_i \text{ for } \{i, j\} \in \mathcal{K}).$$

The homotopy fibrations $\mathcal{L}_{\mathcal{K}} \to (S^1)^{\mathcal{K}} \to (S^1)^m$ and $\mathcal{R}_{\mathcal{K}} \to (\mathbb{R}P^{\infty})^{\mathcal{K}} \to (\mathbb{R}P^{\infty})^m$ are generalised as follows.

The homotopy fibrations $\mathcal{L}_{\mathcal{K}} \to (\mathcal{S}^1)^{\mathcal{K}} \to (\mathcal{S}^1)^m$ and $\mathcal{R}_{\mathcal{K}} \to (\mathbb{R}P^{\infty})^{\mathcal{K}} \to (\mathbb{R}P^{\infty})^m$ are generalised as follows.

Proposition

There is a homotopy fibration

$$(E\mathbf{G},\mathbf{G})^{\mathcal{K}}\longrightarrow (B\mathbf{G})^{\mathcal{K}}\longrightarrow \prod_{k=1}^{m}BG_k,$$

where $B\mathbf{G} = \{BG_1, \dots, BG_m\}$ is the sequence of classifying spaces, and $E\mathbf{G} = \{EG_1, \dots, EG_m\}$ the sequence of the universal G_i -spaces.

イロン イロン イヨン イヨン 二日

A missing face (a minimal non-face) of \mathcal{K} is a subset $I \subset [m]$ such that $I \notin \mathcal{K}$, but $J \in \mathcal{K}$ for each $J \subsetneq I$.

A missing face (a minimal non-face) of \mathcal{K} is a subset $I \subset [m]$ such that $I \notin \mathcal{K}$, but $J \in \mathcal{K}$ for each $J \subsetneq I$.

 \mathcal{K} a flag complex if each of its missing faces consists of two vertices. Equivalently, \mathcal{K} is flag if any set of vertices of \mathcal{K} which are pairwise connected by edges spans a simplex. A missing face (a minimal non-face) of \mathcal{K} is a subset $I \subset [m]$ such that $I \notin \mathcal{K}$, but $J \in \mathcal{K}$ for each $J \subsetneq I$.

 \mathcal{K} a flag complex if each of its missing faces consists of two vertices. Equivalently, \mathcal{K} is flag if any set of vertices of \mathcal{K} which are pairwise connected by edges spans a simplex.

Every flag complex \mathcal{K} is determined by its 1-skeleton \mathcal{K}^1 .

Let $\mathbf{G}^{\mathcal{K}}$ be a graph product group.

э

크

Image: A matrix

Let $\mathbf{G}^{\mathcal{K}}$ be a graph product group. • $\pi_1((B\mathbf{G})^{\mathcal{K}}) \cong \mathbf{G}^{\mathcal{K}}$.

3 > 4 3

Let $\mathbf{G}^{\mathcal{K}}$ be a graph product group.

Both spaces (BG)^K and (EG, G)^K are aspherical if and only if K is flag. Hence, B(G^K) = (BG)^K whenever K is flag.

Let $\mathbf{G}^{\mathcal{K}}$ be a graph product group.

Both spaces (BG)^K and (EG, G)^K are aspherical if and only if K is flag. Hence, B(G^K) = (BG)^K whenever K is flag.

3
$$\pi_i((B\mathbf{G})^{\mathcal{K}}) \cong \pi_i((E\mathbf{G},\mathbf{G})^{\mathcal{K}})$$
 for $i \ge 2$.

Let $\mathbf{G}^{\mathcal{K}}$ be a graph product group.

- ② Both spaces (BG)^𝔅 and (EG, G)^𝔅 are aspherical if and only if 𝔅 is flag. Hence, B(G^𝔅) = (BG)^𝔅 whenever 𝔅 is flag.

3
$$\pi_i((B\mathbf{G})^{\mathcal{K}}) \cong \pi_i((E\mathbf{G},\mathbf{G})^{\mathcal{K}})$$
 for $i \ge 2$.

• $\pi_1((E\mathbf{G}, \mathbf{G})^{\mathcal{K}})$ is isomorphic to the kernel of the canonical projection $\mathbf{G}^{\mathcal{K}} \to \prod_{k=1}^m G_k$.

Specialising to the cases $G_k = \mathbb{Z}$ and $G_k = \mathbb{Z}_2$ respectively we obtain:

æ

Specialising to the cases $G_k = \mathbb{Z}$ and $G_k = \mathbb{Z}_2$ respectively we obtain:

Corollary

Let $RA_{\mathcal{K}}$ be a right-angled Artin group.

$$1 \pi_1((S^1)^{\mathcal{K}}) \cong RA_{\mathcal{K}}.$$

2 Both $(S^1)^{\mathcal{K}}$ and $\mathcal{L}_{\mathcal{K}} = (\mathbb{R}, \mathbb{Z})^{\mathcal{K}}$ are aspherical iff \mathcal{K} is flag.

3
$$\pi_i((S^1)^{\mathcal{K}}) \cong \pi_i(\mathcal{L}_{\mathcal{K}})$$
 for $i \ge 2$.

• $\pi_1(\mathcal{L}_{\mathcal{K}})$ is isomorphic to the commutator subgroup $RA'_{\mathcal{K}}$.

Specialising to the cases $G_k = \mathbb{Z}$ and $G_k = \mathbb{Z}_2$ respectively we obtain:

Corollary

Let $RA_{\mathcal{K}}$ be a right-angled Artin group.

$$1 \pi_1((S^1)^{\mathcal{K}}) \cong RA_{\mathcal{K}}.$$

2 Both $(S^1)^{\mathcal{K}}$ and $\mathcal{L}_{\mathcal{K}} = (\mathbb{R}, \mathbb{Z})^{\mathcal{K}}$ are aspherical iff \mathcal{K} is flag.

3
$$\pi_i((S^1)^{\mathcal{K}}) \cong \pi_i(\mathcal{L}_{\mathcal{K}})$$
 for $i \ge 2$.

• $\pi_1(\mathcal{L}_{\mathcal{K}})$ is isomorphic to the commutator subgroup $RA'_{\mathcal{K}}$.

Corollary

Let $RC_{\mathcal{K}}$ be a right-angled Coxeter group.

$$1 \pi_1((\mathbb{R}P^{\infty})^{\mathcal{K}}) \cong RC_{\mathcal{K}}.$$

- 2 Both $(\mathbb{R}P^{\infty})^{\mathcal{K}}$ and $\mathcal{R}_{\mathcal{K}} = (D^1, S^0)^{\mathcal{K}}$ are aspherical iff \mathcal{K} is flag.
- $\pi_i((\mathbb{R}P^{\infty})^{\mathcal{K}}) \cong \pi_i(\mathcal{R}_{\mathcal{K}}) \text{ for } i \geq 2.$
- $\pi_1(\mathcal{R}_{\mathcal{K}})$ is isomorphic to the commutator subgroup $RC'_{\mathcal{K}}$.

Let \mathcal{K} be an *m*-cycle (the boundary of an *m*-gon). A simple argument with Euler characteristic shows that $\mathcal{R}_{\mathcal{K}}$ is homeomorphic to a closed orientable surface of genus $(m-4)2^{m-3} + 1$.

(This observation goes back to a 1938 work of Coxeter.)

Let \mathcal{K} be an *m*-cycle (the boundary of an *m*-gon). A simple argument with Euler characteristic shows that $\mathcal{R}_{\mathcal{K}}$ is homeomorphic to a closed orientable surface of genus $(m-4)2^{m-3} + 1$.

(This observation goes back to a 1938 work of Coxeter.)

Therefore, the commutator subgroup of the corresponding right-angled Coxeter group $RC_{\mathcal{K}}$ is a surface group.

Let \mathcal{K} be an *m*-cycle (the boundary of an *m*-gon). A simple argument with Euler characteristic shows that $\mathcal{R}_{\mathcal{K}}$ is homeomorphic to a closed orientable surface of genus $(m-4)2^{m-3} + 1$.

(This observation goes back to a 1938 work of Coxeter.) Therefore, the commutator subgroup of the corresponding right-angled Coxeter group $RC_{\mathcal{K}}$ is a surface group.

Similarly, when $|\mathcal{K}| \cong S^2$ (which is equivalent to \mathcal{K} being the boundary of a 3-dimensional simplicial polytope), $\mathcal{R}_{\mathcal{K}}$ is a 3-dimensional manifold. Therefore, the commutator subgroup of the corresponding $RC_{\mathcal{K}}$ is a 3-manifold group.

We have

$$\operatorname{Ker}\left(\boldsymbol{G}^{\mathcal{K}} \to \prod_{k=1}^{m} G_{k}\right) = \pi_{1}((\boldsymbol{E}\boldsymbol{G}, \boldsymbol{G})^{\mathcal{K}}).$$

We have

$$\operatorname{Ker}\left(\boldsymbol{G}^{\mathcal{K}} \to \prod_{k=1}^{m} G_{k}\right) = \pi_{1}((\boldsymbol{E}\boldsymbol{G}, \boldsymbol{G})^{\mathcal{K}}).$$

In the case of right-angled Artin or Coxeter groups (or when each G_k is abelian), the group above is the commutator subgroup $(\mathbf{G}^{\mathcal{K}})'$.

We have

$$\operatorname{Ker}\left(\boldsymbol{G}^{\mathcal{K}} \to \prod_{k=1}^{m} G_{k}\right) = \pi_{1}((\boldsymbol{E}\boldsymbol{G}, \boldsymbol{G})^{\mathcal{K}}).$$

In the case of right-angled Artin or Coxeter groups (or when each G_k is abelian), the group above is the commutator subgroup $(\mathbf{G}^{\mathcal{K}})'$.

The next goal is to study the group $\pi_1((E\mathbf{G}, \mathbf{G})^{\mathcal{K}})$, identify the class of \mathcal{K} for which this group is free, and describe a generator set.

We have

$$\operatorname{Ker}\left(\boldsymbol{G}^{\mathcal{K}} \to \prod_{k=1}^{m} G_{k}\right) = \pi_{1}((\boldsymbol{E}\boldsymbol{G}, \boldsymbol{G})^{\mathcal{K}}).$$

In the case of right-angled Artin or Coxeter groups (or when each G_k is abelian), the group above is the commutator subgroup $(\mathbf{G}^{\mathcal{K}})'$.

The next goal is to study the group $\pi_1((E\mathbf{G}, \mathbf{G})^{\mathcal{K}})$, identify the class of \mathcal{K} for which this group is free, and describe a generator set.

A graph Γ is called chordal (in other terminology, triangulated) if each of its cycles with ≥ 4 vertices has a chord.

We have

$$\operatorname{Ker}\left(\boldsymbol{G}^{\mathcal{K}} \to \prod_{k=1}^{m} G_{k}\right) = \pi_{1}((\boldsymbol{E}\boldsymbol{G}, \boldsymbol{G})^{\mathcal{K}}).$$

In the case of right-angled Artin or Coxeter groups (or when each G_k is abelian), the group above is the commutator subgroup $(\mathbf{G}^{\mathcal{K}})'$.

The next goal is to study the group $\pi_1((E\mathbf{G}, \mathbf{G})^{\mathcal{K}})$, identify the class of \mathcal{K} for which this group is free, and describe a generator set.

A graph Γ is called chordal (in other terminology, triangulated) if each of its cycles with ≥ 4 vertices has a chord.

By a result of Fulkerson–Gross, a graph is chordal if and only if its vertices can be ordered in such a way that, for each vertex *i*, the lesser neighbours of *i* form a complete subgraph.

(A perfect elimination order.)

The following conditions are equivalent:

크

Image: A matrix

The following conditions are equivalent:

• Ker(
$$\mathbf{G}^{\mathcal{K}} \to \prod_{k=1}^{m} G_k$$
) is a free group;

Image: A matrix

The following conditions are equivalent:

- Ker($\mathbf{G}^{\mathcal{K}} \to \prod_{k=1}^{m} G_k$) is a free group;
- **2** $(E\mathbf{G}, \mathbf{G})^{\mathcal{K}}$ is homotopy equivalent to a wedge of circles;

The following conditions are equivalent:

- Ker($\mathbf{G}^{\mathcal{K}} \to \prod_{k=1}^{m} G_k$) is a free group;
- **2** $(E\mathbf{G}, \mathbf{G})^{\mathcal{K}}$ is homotopy equivalent to a wedge of circles;
- **3** \mathcal{K}^1 is a chordal graph.

The following conditions are equivalent:

- Ker($\mathbf{G}^{\mathcal{K}} \to \prod_{k=1}^{m} G_k$) is a free group;
- **2** $(E\mathbf{G}, \mathbf{G})^{\mathcal{K}}$ is homotopy equivalent to a wedge of circles;
- **3** \mathcal{K}^1 is a chordal graph.

Proof

(2)
$$\Rightarrow$$
(1) Because Ker $\left(\boldsymbol{G}^{\mathcal{K}} \rightarrow \prod_{k=1}^{m} G_{k}\right) = \pi_{1}((\boldsymbol{E}\boldsymbol{G}, \boldsymbol{G})^{\mathcal{K}}).$

The following conditions are equivalent:

- Ker($\mathbf{G}^{\mathcal{K}} \to \prod_{k=1}^{m} G_k$) is a free group;
- **2** $(E\mathbf{G}, \mathbf{G})^{\mathcal{K}}$ is homotopy equivalent to a wedge of circles;
- **3** \mathcal{K}^1 is a chordal graph.

Proof

(2)
$$\Rightarrow$$
(1) Because Ker $\left(\boldsymbol{G}^{\mathcal{K}} \rightarrow \prod_{k=1}^{m} G_{k}\right) = \pi_{1}((E\boldsymbol{G},\boldsymbol{G})^{\mathcal{K}}).$

 $(3) \Rightarrow (2)$ Use induction and perfect elimination order.

The following conditions are equivalent:

- Ker($\mathbf{G}^{\mathcal{K}} \to \prod_{k=1}^{m} G_k$) is a free group;
- **2** $(E\mathbf{G}, \mathbf{G})^{\mathcal{K}}$ is homotopy equivalent to a wedge of circles;
- **3** \mathcal{K}^1 is a chordal graph.

Proof

(2)
$$\Rightarrow$$
(1) Because Ker $\left(\boldsymbol{G}^{\mathcal{K}} \rightarrow \prod_{k=1}^{m} G_{k}\right) = \pi_{1}((\boldsymbol{E}\boldsymbol{G}, \boldsymbol{G})^{\mathcal{K}}).$

 $(3) \Rightarrow (2)$ Use induction and perfect elimination order.

(1) \Rightarrow (3) Assume that \mathcal{K}^1 is not chordal. Then, for each chordless cycle of length \geq 4, one can find a subgroup in Ker($\mathbf{G}^{\mathcal{K}} \rightarrow \prod_{k=1}^{m} G_k$) which is a surface group. Hence, Ker($\mathbf{G}^{\mathcal{K}} \rightarrow \prod_{k=1}^{m} G_k$) is not a free group.

Corollary

Let $RA_{\mathcal{K}}$ and $RC_{\mathcal{K}}$ be the right-angled Artin and Coxeter groups corresponding to a simplicial complex \mathcal{K} .

- (a) The commutator subgroup $RA'_{\mathcal{K}}$ is free if and only if \mathcal{K}^1 is a chordal graph.
- (b) The commutator subgroup $RC'_{\mathcal{K}}$ is free if and only if \mathcal{K}^1 is a chordal graph.

A D M A A A M M

Corollary

Let $RA_{\mathcal{K}}$ and $RC_{\mathcal{K}}$ be the right-angled Artin and Coxeter groups corresponding to a simplicial complex \mathcal{K} .

- (a) The commutator subgroup $RA'_{\mathcal{K}}$ is free if and only if \mathcal{K}^1 is a chordal graph.
- (b) The commutator subgroup $RC'_{\mathcal{K}}$ is free if and only if \mathcal{K}^1 is a chordal graph.

Part (a) is the result of Servatius, Droms and Servatius.

A D M A A A M M

Corollary

Let $RA_{\mathcal{K}}$ and $RC_{\mathcal{K}}$ be the right-angled Artin and Coxeter groups corresponding to a simplicial complex \mathcal{K} .

- (a) The commutator subgroup $RA'_{\mathcal{K}}$ is free if and only if \mathcal{K}^1 is a chordal graph.
- (b) The commutator subgroup $RC'_{\mathcal{K}}$ is free if and only if \mathcal{K}^1 is a chordal graph.

Part (a) is the result of Servatius, Droms and Servatius.

The difference between (a) and (b) is that the commutator subgroup $RA'_{\mathcal{K}}$ is infinitely generated, unless $RA_{\mathcal{K}} = \mathbb{Z}^m$, while the commutator subgroup $RC'_{\mathcal{K}}$ is finitely generated. We elaborate on this in the next theorem.

3

Yakov Veryovkin (MSU)

Polyhedral products and commutator...

June 26, 2018 19 / 24

æ

Theorem (Panov–V)

The commutator subgroup $RC'_{\mathcal{K}}$ has a finite minimal generator set consisting of $\sum_{J \subset [m]} \operatorname{rank} \widetilde{H}_0(\mathcal{K}_J)$ iterated commutators $(g_j, g_i), \quad (g_{k_1}, (g_j, g_i)), \quad \dots, \quad (g_{k_1}, (g_{k_2}, \cdots (g_{k_{m-2}}, (g_j, g_i)) \cdots)),$ where $k_1 < k_2 < \cdots < k_{\ell-2} < j > i$, $k_s \neq i$ for any s, and i is the smallest vertex in a connected component not containing j of the subcomplex $\mathcal{K}_{\{k_1,\dots,k_{\ell-2},j,j\}}$.

Theorem (Panov–V)

The commutator subgroup $RC'_{\mathcal{K}}$ has a finite minimal generator set consisting of $\sum_{J \subset [m]} \operatorname{rank} \widetilde{H}_0(\mathcal{K}_J)$ iterated commutators

 $(g_j, g_i), (g_{k_1}, (g_j, g_i)), \dots, (g_{k_1}, (g_{k_2}, \cdots (g_{k_{m-2}}, (g_j, g_i)) \cdots)),$ where $k_1 < k_2 < \cdots < k_{\ell-2} < j > i, k_s \neq i$ for any *s*, and *i* is the smallest vertex in a connected component not containing *j* of the subcomplex $\mathcal{K}_{\{k_1,\dots,k_{\ell-2},j,i\}}.$

Idea of proof

First consider the case $\mathcal{K} = m$ points. Then $\mathcal{R}_{\mathcal{K}}$ is the 1-skeleton of an *m*-cube and $\mathcal{RC}'_{\mathcal{K}} = \pi_1(\mathcal{R}_{\mathcal{K}})$ is a free group of rank $\sum_{\ell=2}^{m} (\ell-1) \binom{m}{\ell}$. It agrees with the total number of nested commutators in the list.

Theorem (Panov–V)

The commutator subgroup $RC'_{\mathcal{K}}$ has a finite minimal generator set consisting of $\sum_{J \subset [m]} \operatorname{rank} \widetilde{H}_0(\mathcal{K}_J)$ iterated commutators

 $(g_j, g_i), (g_{k_1}, (g_j, g_i)), \dots, (g_{k_1}, (g_{k_2}, \cdots (g_{k_{m-2}}, (g_j, g_i)) \cdots)),$ where $k_1 < k_2 < \cdots < k_{\ell-2} < j > i, k_s \neq i$ for any *s*, and *i* is the smallest vertex in a connected component not containing *j* of the subcomplex $\mathcal{K}_{\{k_1,\dots,k_{\ell-2},j,i\}}.$

Idea of proof

First consider the case $\mathcal{K} = m$ points. Then $\mathcal{R}_{\mathcal{K}}$ is the 1-skeleton of an *m*-cube and $\mathcal{RC}'_{\mathcal{K}} = \pi_1(\mathcal{R}_{\mathcal{K}})$ is a free group of rank $\sum_{\ell=2}^{m} (\ell-1) \binom{m}{\ell}$. It agrees with the total number of nested commutators in the list.

Then eliminate the extra nested commutators using the commutation relations $(g_i, g_j) = 1$ for $\{i, j\} \in \mathcal{K}$.

Idea of proof

To see that the given generating set is minimal, argue as follows. The first homology group $H_1(\mathcal{R}_{\mathcal{K}})$ is $RC'_{\mathcal{K}}/RC''_{\mathcal{K}}$. On the other hand,

$$H_1(\mathcal{R}_{\mathcal{K}}) \cong \sum_{J \subset [m]} \widetilde{H}_0(\mathcal{K}_J).$$

Idea of proof

To see that the given generating set is minimal, argue as follows. The first homology group $H_1(\mathcal{R}_{\mathcal{K}})$ is $RC'_{\mathcal{K}}/RC''_{\mathcal{K}}$. On the other hand,

$$H_1(\mathcal{R}_{\mathcal{K}})\cong \sum_{J\subset [m]}\widetilde{H}_0(\mathcal{K}_J).$$

Hence, the number of generators in the abelian group $H_1(\mathcal{R}_{\mathcal{K}}) \cong RC'_{\mathcal{K}}/RC''_{\mathcal{K}}$ is $\sum_{J \subset [m]} \operatorname{rank} \widetilde{H}_0(\mathcal{K}_J)$, and the latter number agrees with the number of iterated commutators in the generator set for $RC'_{\mathcal{K}}$ constructed above.

Let
$$\mathcal{K} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix} \begin{bmatrix} 4 \\ 4 \end{bmatrix}$$

2

<ロ> <問> <問> < 同> < 同> 、

Let
$$\mathcal{K} = 1 \bigoplus_{2 \to 4}^{3}$$

Then the commutator subgroup $RC'_{\mathcal{K}}$ is free with the following basis:

 $(g_3, g_1), (g_4, g_1), (g_4, g_2), (g_4, g_3), \\ (g_2, (g_4, g_1)), (g_3, (g_4, g_1)), (g_1, (g_4, g_3)), (g_3, (g_4, g_2)), \\ (g_2, (g_3, (g_4, g_1))).$

Let
$$\mathcal{K} = 1 \bigoplus_{2 \to 4}^{3}$$

Then the commutator subgroup $RC'_{\mathcal{K}}$ is free with the following basis:

 $(g_3, g_1), (g_4, g_1), (g_4, g_2), (g_4, g_3), \\ (g_2, (g_4, g_1)), (g_3, (g_4, g_1)), (g_1, (g_4, g_3)), (g_3, (g_4, g_2)), \\ (g_2, (g_3, (g_4, g_1))).$

Example

Let \mathcal{K} be an *m*-cycle with $m \ge 4$ vertices. Then \mathcal{K}^1 is not a chordal graph, so the group $RC'_{\mathcal{K}}$ is not free.

Let
$$\mathcal{K} = 1 \bigoplus_{2 \to 4}^{3}$$

Then the commutator subgroup $RC'_{\mathcal{K}}$ is free with the following basis:

 $(g_3, g_1), (g_4, g_1), (g_4, g_2), (g_4, g_3), \\ (g_2, (g_4, g_1)), (g_3, (g_4, g_1)), (g_1, (g_4, g_3)), (g_3, (g_4, g_2)), \\ (g_2, (g_3, (g_4, g_1))).$

Example

Let \mathcal{K} be an *m*-cycle with $m \ge 4$ vertices.

Then \mathcal{K}^1 is not a chordal graph, so the group $\mathcal{RC}'_{\mathcal{K}}$ is not free.

In fact, $\mathcal{R}_{\mathcal{K}}$ is an orientable surface of genus $(m-4)2^{m-3} + 1$, so $RC'_{\mathcal{K}} \cong \pi_1(\mathcal{R}_{\mathcal{K}})$ is a one-relator group.

The are similar results of Grbic, Panov, Theriault and Wu describing the commutator subalgebra of the graded Lie algebra given by

$$L_{\mathcal{K}} = FL\langle u_1, \dots, u_m \rangle / ([u_i, u_i] = 0, [u_i, u_j] = 0 \text{ for } \{i, j\} \in \mathcal{K}),$$

where $FL\langle u_1, \ldots, u_m \rangle$ is the free graded Lie algebra on generators u_i of degree one, and $[a, b] = -(-1)^{|a||b|}[b, a]$ denotes the graded Lie bracket.

The commutator subalgebra is the kernel of the Lie algebra homomorphism $L_{\mathcal{K}} \rightarrow CL\langle u_1, \ldots, u_m \rangle$ to the commutative (trivial) Lie algebra.

The are similar results of Grbic, Panov, Theriault and Wu describing the commutator subalgebra of the graded Lie algebra given by

$$L_{\mathcal{K}} = FL\langle u_1, \dots, u_m \rangle / ([u_i, u_i] = 0, [u_i, u_j] = 0 \text{ for } \{i, j\} \in \mathcal{K}),$$

where $FL\langle u_1, \ldots, u_m \rangle$ is the free graded Lie algebra on generators u_i of degree one, and $[a, b] = -(-1)^{|a||b|}[b, a]$ denotes the graded Lie bracket.

The commutator subalgebra is the kernel of the Lie algebra homomorphism $L_{\mathcal{K}} \to CL\langle u_1, \ldots, u_m \rangle$ to the commutative (trivial) Lie algebra.

The graded Lie algebra $L_{\mathcal{K}}$ is a graph product similar to the right-angled Coxeter group $RC_{\mathcal{K}}$.

It has a similar colimit decomposition, with each $G_i = \mathbb{Z}_2$ replaced by the trivial Lie algebra $CL\langle u \rangle = FL\langle u \rangle/([u, u] = 0)$ and the colimit taken in the category of graded Lie algebras.

T. Panov and Ya. Veryovkin. *Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups*. Sbornik Math. 207 (2016), no. 11, pp. 1582-1600; arXiv:1603.06902.

Thank you for you attention!