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Let χ = (kp)p∈P, where kp ∈ N ∪ {0,∞} for all p, and let

Lχ =
{
p ∈ P

∣∣ kp 6= 0
}
. We set

Rp =

{
the ring of p-adic integers if kp =∞;

Z/pkpZ if kp <∞.

Let the set L = Lχ be infinite. We introduce the notations

Kχ =
∏
p∈L

Rp, Tχ =
⊕
p∈L

Rp ⊂ Kχ.

The ring of pseudorational numbers of cocharacteristic χ is
the subring R ⊂ Kχ such that Tχ ⊂ R and R/Tχ ∼= Q.

Later P.A. Krylov introduced csp-rings as a generalization
of rings of pseudorational numbers.
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Kχ =
∏
p∈L

Rp, Tχ =
⊕
p∈L

Rp ⊂ Kχ

Definition. Any subring R ⊂ Kχ such that Tχ ⊂ R and the
ring R/Tχ is a field is called a csp-ring of cocharacteristic χ.

The field R/Tχ as well as every field isomorphic to it is called
a base field of the csp-ring R. Every such field (i.e., a field
that can be embedded in Kχ/Tχ as a subring) has character-
istic 0 and a cardinality not exceeding 2ℵ0 = c.

Question.Which fields may serve as base fields of csp-rings?
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In 1980’s and 1990’s the studying of realization problems
became an important part of the theory of endomorphism
rings of Abelian groups (Albrecht, Corner, Dugas, Göbel,
Goldsmith, Zanardo and others).

If F is a base field of the csp-ring R whose cocharacteristics
does not contain ∞’s, then the additive group R+ of R
satisfies EndWalkR

+ ∼= Q⊗ EndR+ ∼= F ;

here EndWalkA is the endomorphism ring of the group A
in the category Walk (E.Walker) and Q ⊗ EndA is the
quasiendomorphism algebra of the group A.

Thus every realization theorem for base fields of csp-rings
can be considered as a realization theorem for endomorphism
rings (in suitable categories).



In 1980’s and 1990’s the studying of realization problems
became an important part of the theory of endomorphism
rings of Abelian groups (Albrecht, Corner, Dugas, Göbel,
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Goldsmith, Zanardo and others).

If F is a base field of the csp-ring R whose cocharacteristics
does not contain ∞’s, then the additive group R+ of R
satisfies EndWalkR

+ ∼= Q⊗ EndR+ ∼= F ;

here EndWalkA is the endomorphism ring of the group A
in the category Walk (E.Walker) and Q ⊗ EndA is the
quasiendomorphism algebra of the group A.

Thus every realization theorem for base fields of csp-rings
can be considered as a realization theorem for endomorphism
rings (in suitable categories).



Theorem 1. If χ and ϕ are characteristics with Lχ = Lϕ,
then for every field F an embedding F → Kχ/Tχ exists if
and only if an embedding F → Kϕ/Tϕ exists.

In view of this fact, when studying base fields of csp-rings,
we can restrict ourselves to the case when χ contains only
0’s and 1’s:

KL =
∏
p∈L

Zp, TL =
⊕
p∈L

Zp ⊂ KL,

where L is an infinite set of primes and Zp = Z/pZ.
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“for almost all” = “for all but finitely many”

Remark. Every polynomial from Q[x] can be considered as
an element of the ring Zp[x] for almost all p ∈ P.

Definition. An infinite subset L ⊂ P is called universal if
every nonconstant polynomial from Q[x] can be factored in
Zp[x] into the product of polynomials of degree 1 for almost
all p ∈ L.

Remark. The concept of universal set will be unchanged if
in its definition we replace Zp with the ring of p-adic integers
or with the p-adic number field.
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Theorem 2. Universal sets exist.

Remark. There exists a continuum almost disjoint family
of universal subsets of P.
(It suffices to choose a continuum almost disjoint family of
infinite subsets of some fixed universal set L.)

Theorem 3. If L is a universal set, then the algebraic closure
Q of Q can be embedded in KL/TL.

Cardinal characteristics of the continuum (which are more
commonly used in set theory and topology) turned out to be
a powerful tool for the study of base fields of csp-rings.
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Cardinal characteristics of the continuum
Let 〈NN,≺〉 be the set of all functions N→ N, where

z′ ≺ z ⇐⇒ z′(i) < z(i) for almost all i ∈ N.

Definition. We say that a set E ⊂ NN is
– bounded if there is z ∈ NN such that z′ ≺ z for all z′ ∈ E;
– cofinal if for any z′ ∈ NN there is z ∈ E such that z′ ≺ z.

b
def
= min

{
|E|

∣∣ E is an unbounded subset of NN
}
,

d
def
= min

{
|E|

∣∣ E is a cofinal subset of NN
}
.

b and d have the following properties:

ℵ1 6 cf(b) = b 6 cf(d) 6 d 6 c.
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The σ-ideal of all meager (null) subsets of R is denoted by
M (respectively by N ).

(
A is meager def⇐⇒ A =

∞⋃
i=1

Ai with intA = ∅.
)

non(M) is the smallest cardinality of a subset of R which is
not inM.

cov(M) is the smallest cardinality of a subfamily ofM whose
union is equal to R.

The cardinals non(N ) and cov(N ) are defined similarly.

Remark. non(M), cov(M), non(N ) and cov(N ) will be
unchanged if we replace R with the space {0, 1}N equipped
with its usual topology and measure.

All inequalities between these cardinal characteristics are
summarized in Cichoń’s diagram.



The σ-ideal of all meager (null) subsets of R is denoted by
M (respectively by N ).(
A is meager def⇐⇒ A =

∞⋃
i=1

Ai with intA = ∅.
)

non(M) is the smallest cardinality of a subset of R which is
not inM.

cov(M) is the smallest cardinality of a subfamily ofM whose
union is equal to R.

The cardinals non(N ) and cov(N ) are defined similarly.

Remark. non(M), cov(M), non(N ) and cov(N ) will be
unchanged if we replace R with the space {0, 1}N equipped
with its usual topology and measure.

All inequalities between these cardinal characteristics are
summarized in Cichoń’s diagram.
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Short version of Cichoń’s diagram

cov(N ) non(M)

ℵ1 b d c

cov(M) non(N )

(One goes from smaller to larger cardinals by moving along
the arrows; all inequalities are non-strict.)

Remark. If we assign values ℵ1 or ℵ2 to all characteristics
from this diagram and such an assignment does not contra-
dict the diagram, then there is a model of ZFC realizing it.



Algebraically closed fields as base fields
Theorem 4. Let KL/TL contain a subring F which is an
algebraically closed field such that |F | < b. Then the natural
inclusion F → KL/TL can be extended to an embedding of
F (x) into KL/TL, where F (x) is the algebraic closure of the
simple transcendental extension F (x) of F.

Theorem 5. Let L be a universal set. Then every field F
such that |F | 6 b and charF = 0 can be embedded in KL/TL.

Proof (sketch). Let F be the set of all subrings of the ring
KL/TL which are algebraically closed fields.
F 6= ∅ since Q ∈ F by Theorem 3.
By Zorn’s lemma, (F ,⊂) has a maximal element G.
By Theorem 4 we have |G| > b.
If |F | 6 b and charF = 0, then F can be embedded in G.
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Theorem 6. Suppose b = c. Then F is a base field of some
csp-ring if and only if |F | 6 c and charF = 0.

In particular, the conditions of Theorem 6 are equivalent
if we assume the generalized continuum hypothesis, the
continuum hypothesis or Martin’s axiom since

GCH =⇒ CH =⇒ Martin’s axiom =⇒ b = c.

Martin’s Axiom. If X is a compact Hausdorff space and
there is no uncountable family of pairwise nonintersecting
open subsets of X , then X is not the union of less then c
nowhere dense subsets.
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Martin’s Axiom. If X is a compact Hausdorff space and
there is no uncountable family of pairwise nonintersecting
open subsets of X , then X is not the union of less then c
nowhere dense subsets.



Characteristic ieL

KL =
∏
p∈L

Zp

Let b = (bp)p∈L and d = (dp)p∈L be elements of KL. We write
b ≈ d if bp = dp for infinitely many p ∈ L.

We introduce a new characteristic which depends on L:

let ieL (from the words “infinitely equal”) denote the smallest
cardinality of a set B ⊂ KL with the following property:

for any b ∈ KL there is d ∈ B such that b ≈ d.
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cov(N ) non(M)

ℵ1 b d c

cov(M) non(N )

1. ℵ1 6 ieL 6 non(M).

2. If
∑
p∈L

1
p
<∞, then ieL > cov(N ).

3. (A. Blass) If
∑
p∈L

1
p
=∞, then ieL 6 non(N ).

4. Martin’s axiom implies that ieL = c for every L ⊂ P.



cov(N ) non(M)

ℵ1 b d c

cov(M) non(N )

Theorems 7 and 8 are related with the cardinal max(ieL, b)
which will appear in Theorem 9.
Theorem 7. If d = b, then sup

L
max(ieL, b) = non(M).

Theorem 8. Each of the following inequalities is consistent
with ZFC:
(a) ieL > b;
(b) ieL < b;
(c) max(ieL, b) > max(ieX , b).





Purely transcendental extensions of Q
Theorem 9. Suppose KL/TL contains a field F such that
|F | < max(ieL, b). Then the natural inclusion F → KL/TL
can be extended to an embedding F (x) → KL/TL with F (x)
being the simple transcendental extension of F.

Theorem 10. For any infinite L ⊂ P and any cardinal
number M 6 max(ieL, b) the purely transcendental extension
Q(M) of Q with transcendence degree M can be embedded
in KL/TL.

Proof (sketch). Let F be the set of all fields which are
subrings of KL/TL.
F 6= ∅ since Q ∈ F .
By Zorn’s lemma, (F ,⊂) has a maximal element G.
By Theorem 9 we have |G| > max(ieL, b).
Q(M) can be embedded in G.
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There is a sufficient supply of csp-rings with a fixed base
field F :

Theorem 11. Let L be a universal set, and let F be some
countable field such that charF = 0 and F � Q. Then the
set of csp-rings R ⊂ KL with R/TL

∼= F has cardinality c
(all such rings are pairwise nonisomorphic).
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