Diamond Lemma and some applications

Sergei Matveev

Laboratory of Topology and Dynamics of Novosibirsk State University Chelyabinsk State University TOMSK 2019

- In 2005 I introduced a new version of this Lemma and called it Diamond Lemma.
- It turned out that the new version is useful for working with topological objects: 3-manifolds, knots, knotted graphs.

Definitions

- Let Γ be an oriented graph.
- We denote its vertex and edge sets by $V(\Gamma)$ and $E(\Gamma)$.
- Oriented path in Γ is a sequence $\{\overrightarrow{A_1A_2}, \overrightarrow{A_2A_3}, \dots\}$.

Definition 1. Vertex W is a root of V if

- 1. There is an oriented path from V to W.
- 2. Vertex W is a sink.

Question: When the root of any vertex exists and is unique ?

We formulate two properties of graph Γ : (FP) and (MF).

• Finiteness property (FP) : Any oriented path has finite length.

• It means that graph Γ does not contain oriented cycles or infinite oriented path.

• Denote $E^2(\Gamma)$ the set of all pair of edges in the form $(\overrightarrow{AB_1}, \overrightarrow{AB_2})$.

• Mediator function (MF): There exists the map

 $\mu: E^2(\Gamma) \to \mathbb{N} \cup \{0\}$, called *mediator function*, which satisfies the following conditions:

- 1. For any edges $(\overrightarrow{AB_1}, \overrightarrow{AB_2})$ with $\mu(\overrightarrow{AB_1}, \overrightarrow{AB_2}) = 0$ there exists a DIAMOND: vertex C and paths from B_1 and from B_2 ending in the same vertex $C \in V(\Gamma)$.
- 2. If $\mu(\overrightarrow{AB_1}, \overrightarrow{AB_2}) > 0$, then there exists the edge \overrightarrow{AC} such that $\mu(\overrightarrow{AB_i}, \overrightarrow{AC}) < \mu(\overrightarrow{AB_1}, \overrightarrow{AB_2})$ for i = 1, 2.

Diamond Lemma

• Suppose that an oriented graph Γ has property (FP) and (MF). Then every vertex has a unique root.

• For proof we need same definitions and lemma.

Definitions

- 1. The vertex is called *regular* if it has exactly one root.
- 2. The vertex is called *singular* otherwise.
- 3. The edge is called *regular* if and only if its endpoint is regular.
- 4. The edge is called *singular* if and only if its endpoint is singular.

Lemma

Let an oriented graph have two properties:

- 1. (FP).
- 2. graph Γ has a singular vertex.

Then there exists singular vertex with all regular outgoing edges.

 Proof is easy: arguing by contradiction, assume that any singular vertex of graph Γ has singular outgoing edge. Choose the path of these singular outgoing edges. We get infinite path in contradiction to (FP).

Proof of Diamond Lemma

- Arguing by contradiction, assume that the graph Γ has the singular vertex A with outgoing regular edges (according to the last lemma).
- Choose two edges $\overrightarrow{AB_1}$ and $\overrightarrow{AB_2}$ which have different roots, and the number $\mu_0 = \mu(\overrightarrow{AB_1}, \overrightarrow{AB_2})$ is minimal possible among all numbers $\mu(\overrightarrow{AX_1}, \overrightarrow{AX_2})$ with X_1 and X_2 having different roots. Note that $B_1 \neq B_2$ since both B_1 and B_2 are regular.

- We have two possibilities: $\mu(\overrightarrow{AB_1}, \overrightarrow{AB_2}) = 0$ and $\mu(\overrightarrow{AB_1}, \overrightarrow{AB_2}) > 0$.
- In the first case any root for vertex C in (MF1) is a common root for vertices B_1 and B_2 . Since both these vertices are regular, they do not have other roots, which contradicts the choice of B_1 and B_2 .
- In the second case we obtain a contradiction between the property (MF2) and the choice of the edges $\overrightarrow{AB_1}$ and $\overrightarrow{AB_2}$.

Let vertex C be the end of edge \overrightarrow{AC} in (MF2). All the vertices B_1 , B_2 and C are regular, each of them has unique root.

- The roots are different, and therefore at least one of these roots (let say root of B_2) is different from root of *C*.
- Since according to (MF2) $\mu(\overrightarrow{AB_2}, \overrightarrow{AC}) < \mu(\overrightarrow{AB_1}, \overrightarrow{AB_2}) = \mu_0.$
- This is the contradiction.

The universal application scheme

- Let \mathbb{Q} be the class of objects under consideration.
- We first construct a graph Γ whose vertices are unordered finite sets of objects in the class \mathbb{Q} .
- The edges of the graph are defined by means of non-trivial reductions.

• Reductions of objects define reductions of vertices of the graph, and therefore define its edges. Two vertices A, B of Γ are joined by an edge \overrightarrow{AB} if and only if they consist of the same objects with one exception: one object at the vertex A undergoes a reduction, that is, is replaced by a new object or pair of objects.

 An edge is determined by the initial and terminal sets of objects only, and does not depend on the particular way in which a reduction is carried out. Hence, the graph Γ does not contain multiple edges.

Properties (FP) and (MF)

- The proof of the property (FP) is usually straightforward. It depends on the particular problem.
- By contrast, the mediator function in (MF) is always constructed in the same way.

• Its value $\mu(\overrightarrow{AB_1}, \overrightarrow{AB_2})$ at a pair of edges is defined as the minimal number $\#(S_1 \cap S_2)$ of connected components of the intersection of surfaces S_1 , $S_2 \subset A$ defining the edges $\overrightarrow{AB_1}$, $\overrightarrow{AB_2}$, where the minimum is taken over all pairs of such surfaces. Of course, here we assume that the surfaces are in general position.

• If $\mu(\overrightarrow{AB_1}, \overrightarrow{AB_2}) = 0$, that is, if the edges can be defined by disjoint surfaces, then each of these surfaces survives under reduction along the other surface. This implies that the vertex obtained as a result of both reductions does not depend on which of the reductions is carried out first. Therefore, it can be taken as the vertex C in the formulation of (MF1).

• Assume now that $\mu(\overrightarrow{AB_1}, \overrightarrow{AB_2}) > 0$. This implies that the vertices B_1 , B_2 are different, since otherwise the edges $\overline{AB_1}$ and $\overline{AB_2}$ could be given by parallel copies of the same surface, which would imply that $\mu(\overrightarrow{AB_1}, \overrightarrow{AB_2}) = 0$. In order to establish the property (MF2) it is enough to show that for any two surfaces $S_1, S_2 \subset A$ defining the edges $\overrightarrow{AB_1}$, $\overrightarrow{AB_2}$ there exists a surface $S \subset$ A defining an edge and satisfying $\#(Si \cap S)$ $< \#(S_1 \cap S_2)$ for i = 1.2.

- We refer to this *S* as a mediator surface. The remarkable fact is that the standard technique of removing intersections of surfaces can be applied to find a mediator surface.
- This technique has long been used in lowdimensional topology and is quite well developed. Of course, the particular methods for constructing mediator surfaces depend on the nature of the problem.

Applications:

• 1. The Kneser-Milnor prime decomposition theorem:

A compact connected orientable 3-dimensional manifold M different from a sphere is gomeomorphic to a connected sum $M_1 # M_2 # \dots # M_n # m(S^1 \times S^2)$, where all the M_i are irreducible and $m(S^1 \times S^2)$ denotes connected sum of $m \ge 0$ copies of $S^1 \times S^2$. All summands are defined uniquely by reordering.

For proof we could using reductions along all spheres.

For nonorientable 3-manifolds this theorem is false!

The theorem is true by replacing

$S^1 \times S^2 \leftrightarrow S^1 \times S^2$

The other results

2. The Swarup theorem for boundary connected sums (new proof).

3. A spherical splitting theorem for knotted graphs in 3-manifolds (Joint work with C. Hog-Angeloni; After Petronio's splittings of 3-orbifolds) (new proof).

- 4. Counterexamples to prime decomposition theorems for knots in 3-manifolds and for 3-orbifolds.
- 5. A new theorem on annular splittings of 3-manifolds, which is independent of the JSJ-decomposition theorem.
- 6. An existence and uniqueness theorem for prime decompositions of homologically trivial knots in direct products of surfaces and intervals.
- 7. A theorem on the exact structure of the semigroup of theta-curves in 3-manifolds
 - (joint work with V. Turaev).

Schubert prime decomposition theorem:

(1) Any knot in the 3-sphere can be decomposed into connected sum of prime factors.

(2) The factors are unique up to permutation.

Does the Schubert Theorem hold for global knots?

• Existence: in general NO!

- If a knot K in a 3-manifold M crosses
- a 2-sphere in M at exactly one point
- then K has no prime decomposition.
- If there is no such sphere then prime decompositions of K do exist.

Knots in direct products of surfaces by interval

- F x I are simplest 3-manifolds after S^3
- Knots in F x I have classical diagrams
- They dominate virtual knots

Questions:

- Does any knot have a prime decomposition? Yes!
- Are the summands unique? Yes and No!
- Main Theorem:

If $[K] \in H_1$ (F; Z_2) is 0 then Yes

In general No

Counterexample

Thank you for your attention

• The end

A mediator sphere can be found among the spheres ∂X_i (left) or among the spheres ∂X_i and the sphere $\partial X_1 # \partial X_3$ (right)

2. A spherical splitting theorem for knotted graphs in 3-manifolds (Joint work with C. Hog-Angeloni; After Petronio's splittings of 3-orbifolds)

• Let (M,G) be a knotted graph, and apply non-trivial spherical reductions to it as many times as possible. Then this process always stops after a finite numbers of steps. The resulting set of irreducible knotted graphs is defined uniquely up to addition or deletion of trivial pairs in form of a suspension (double cone) over the pair (S^2, X) , where the set $X \subset S^2$ consists of $k \leq 3$ points.

Two splitting spheres in manifold $(S^1 \times S^2) # (S^1 \times S^2)$

Counterexample for knotted graphs: along the sphere *P* and along the sphere *Q*

