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Figure 4: Surfaces and Virtuals

We have the

Theorem 1 [17, 24, 19, 3]. Two virtual link diagrams are isotopic if and only if their

corresponding surface embeddings are stably equivalent.

In Figure 4 we illustrate some points about this association of virtual diagrams and knot

and link diagrams on surfaces. Note the projection of the knot diagram on the torus to

a diagram in the plane (in the center of the figure) has a virtual crossing in the planar

diagram where two arcs that do not form a crossing in the thickened surface project to

the same point in the plane. In this way, virtual crossings can be regarded as artifacts of

projection. The same figure shows a virtual diagram on the left and an “abstract knot

diagram” [38, 3] on the right. The abstract knot diagram is a realization of the knot

on the left in a thickened surface with boundary and it is obtained by making a neigh-

borhood of the virtual diagram that resolves the virtual crossing into arcs that travel

on separate bands. The virtual crossing appears as an artifact of the projection of this

surface to the plane. The reader will find more information about this correspondence

[17, 24] in other papers by the author and in the literature of virtual knot theory.

4 Flat Virtual Knots and Links

Every classical knot or link diagram can be regarded as a 4-regular plane graph with ex-
tra structure at the nodes. This extra structure is usually indicated by the over and under

crossing conventions that give instructions for constructing an embedding of the link in

three dimensional space from the diagram. If we take the flat diagramwithout this extra

structure then the diagram is the shadow of some link in three dimensional space, but

the weaving of that link is not specified. It is well known that if one is allowed to apply

the Reidemeister moves to such a shadow (without regard to the types of crossing since

they are not specified) then the shadow can be reduced to a disjoint union of circles.
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Virtual Knot Theory
 studies stabilized knots in thickened surfaces.



Figure 6 — Signed Gauss Codes

Now consider the effect of changing these signs. For example let

g = O1 + U2 + O3 − U1 + O2 + U3 − .

Then g is a signed Gauss code and as Figure 6 illustrates, the corresponding
diagram is forced to have virtual crossings in order to acommodate the change
in orientation. The codes t and g have the same underlying (unsigned) Gauss
code O1U2O3U1O2U3, but g corresponds to a virtual knot while t represents
the classical trefoil.

Carrying this approach further, we define a virtual knot as an equivalence
class of oriented Gauss codes under abstractly defined Reidemeister moves
for these codes—with no mention of virtual crossings. The virtual crossings
become artifacts of a planar representation of the virtual knot. The move sets
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Virtual knots are 
all oriented

(signed) Gauss 
codes taken up to 

Reidemeister 
moves on the 

codes.

Virtual crossings 
are artifacts of 

the planar 
diagram.



There exist infinitely many non-trivial K 
with unit Jones polynomial.

Bracket Polynomial is Unchanged 
when smoothing flanking virtuals.

Z-Equivalence



to the handling of classical knot diagrams. Many structures in classical knot theory

generalize to the virtual domain.

In the diagrammatic theory of virtual knots one adds a virtual crossing (see Figure

1) that is neither an over-crossing nor an under-crossing. A virtual crossing is repre-

sented by two crossing segments with a small circle placed around the crossing point.

Moves on virtual diagrams generalize the Reidemeister moves for classical knot

and link diagrams. See Figure 1. One can summarize the moves on virtual diagrams by

saying that the classical crossings interact with one another according to the usual Rei-

demeister moves while virtual crossings are artifacts of the attempt to draw the virtual

structure in the plane. A segment of diagram consisting of a sequence of consecutive

virtual crossings can be excised and a new connection made between the resulting free

ends. If the new connecting segment intersects the remaining diagram (transversally)

then each new intersection is taken to be virtual. Such an excision and reconnection

is called a detour move. Adding the global detour move to the Reidemeister moves

completes the description of moves on virtual diagrams. In Figure 1 we illustrate a set

of local moves involving virtual crossings. The global detour move is a consequence

of moves (B) and (C) in Figure 1. The detour move is illustrated in Figure 2. Virtual

knot and link diagrams that can be connected by a finite sequence of these moves are

said to be equivalent or virtually isotopic.

A

B

C

RI

RII

RIII

vRI

vRII

vRIII

mixed

  RIII

planar
isotopy

Figure 1: Moves

Another way to understand virtual diagrams is to regard them as representatives

for oriented Gauss codes [8], [17, 18] (Gauss diagrams). Such codes do not always

have planar realizations. An attempt to embed such a code in the plane leads to the

production of the virtual crossings. The detour move makes the particular choice of
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Generalized Reidemeister Moves for 
Virtual Knots and Links









Vertical Mirror Image



Connected Sum 
with the

Vertical Mirror Image
is 

Slice.



We say that K is concordant to K`
K ~ K`

if there exists a cobordism from K to K` of genus 0.

A virtual knot is said to be slice
if it is concordant to the unknot.
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VS

g = (1/2)(-r + n + 1) = (1/2)(-3 +4 + 1) = 1.

Seifert Cobordism for the Virtual Stevedore
and for a corresponding positive diagram D.

D

Figure 21: Virtual Stevedore Cobordism Seifert Surface

VS

VS on a torus.

Figure 22: Virtual Stevedore on a Torus
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D is a positive 
virtual diagram and

is NOT slice.

VS is the virtual stevedore
and bounds 

another surface of 
genus zero.



We now observe that for any classical knotK, there is a surface bounding that knot in the four-ball
that is homeomorphic to the Seifert surface. One can construct this surface by pushing the Seifert

surface into the four-ball keeping it fixed along the boundary. We will give here a different description

of this surface as indicated in Figure 19. In that figure we perform a saddle point transformation at

every crossing of the diagram. The result is a collection of unknotted and unlinked curves. By our

interpretation of surfaces in the four-ball obtained by saddle moves and isotopies, we can then bound

each of these curves by discs (via deaths of circles) and obtain a surface S(K) embedded in the four-
ball with boundaryK. As the reader can easily see, the curves produced by the saddle transformations
are in one-to-one correspondence with the Seifert circles for K, and it easy to verity that S(K) is
homeomorphic with the Seifert surface F (K). Thus we know that g(S(K)) = (1/2)(−r + n + 1). In
fact the same argument that we used to analyze the genus of the Seifert surface applies directly to the

construction of S(K) via saddles and minima.

Now the stage is set for generalizing the Seifert surface to a surface S(K) for virtual knotsK.View
Figure 20 and Figure 21. In these figures we have performed a saddle transformation at each classical

crossing of a virtual knotK. The result is a collection of unknotted curves that are isotopic (by the first
classical Reidemeister move) to curves with only virtual crossings. Once the first Reidemeister moves

are performed, these curves are identical with the virtual Seifert circles obtained from the diagram K
by smoothing all of its classical crossings. We can then Isotope these circles into a disjoint collection

of circles (since they have no classical crossings) and cap them with discs in the four-ball. The result

is a virtual surface S(K) whose boundary is the given virtual knot K. We will use the terminology
virtual surface in the four-ball for this surface schema. In the case of a virtual slice knot, we have that

the knot bounds a virtual surface of genus zero. But with this construction we have proved the

Lemma. Let K be a virtual knot, then the virtual Seifert surface S(K) constructed above has genus
given by the formula

g(S(K)) = (1/2)(−r + n + 1)

where r is the number of virtual Seifert circles in the diagram K and n is the number of classical
crossings in the diagramK.

Proof. The proof follows by the same argument that we already gave in the classical case. Here

the projected virtual diagram gives a four-regular graph G (not necessarily planar) whose nodes are

in one-to-one correspondence with the classical crossings of K. The edges of G are in one-to-one

correspondence with the edges in the diagram that extend from one classical crossing to the next.

We regard G as an abstract graph so the the virtual crossings disappear. The argument then goes

over verbatim in the sense that G with two-cells attached to the virtual Seifert circles is a retract of

the surface S(K) constructed by cobordism. The counting argment for the genus is identical to the
classical case. This completes the proof. //

Remark. For the virtual stevedore in Figure 21 we have the interesting phenomenon that there is a

much lower genus surface that can be produced by cobordism than the virtual Seifert surface. In that

same figure we have illustrated a diagramD with the same projected diagram as the virtual stevedore,

but D has all positive crossings. In this case we can prove [2] that there is no virtual surface for this

diagramD of four-ball genus less than 1. In fact, we have the following result which is proved in [2].
This Theorem is a generalization of a corresponding result for classcial knots due to Rasmussen [16].

Theorem [2]. Let K be a positive virtual knot (all classcial crossings in K are positive), then the

four-ball genus g4(K) is given by the formula

g4(K) = (1/2)(−r + n + 1) = g(S(K))
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Figure 18: Classical Seifert Surface

where r is the number of virtual Seifert circles in the diagram K and n is the number of classcial
crossings in this diagram. In other words, that virtual Seifert surface for K represents its minimal

four-ball genus.

3.2 Properties of the Virtual Stevedore’s Knot

We first point out that the virtual stevedore (V S) is an example that illustrates the viability of our
theory. We prove that V S is not classical by showing that it is represented on a surface of geus one and
no smaller. The reader should note the difference between representation of a virtual knot or link on a

surface (as an embedding into the thickened surface) and the previous subsection’s work on spanning

surfaces.

The technique for finding this surface genus for the virtual stevedore is to use the bracket expansion

on a toral representative of V S and examine the structure of the state loops on that surface. See

Figure 22 and Figure 23. Note that in thes Figures the virtual crossings correspond to parts of the

diagram that loop around the torus, and do not weave on the surface of the torus. An analysis of the

homology classes of the state loops shows that the knot cannot be isotoped off the handle structure of

the torus. See [6, 23] for more information about using the surface bracket.

Next we examine the bracket polynomial of the virtual stevedore, and show as in Figure 24 that it

has the same bracket polynomial as the classical figure eight knot. The technique for showing this is

to use the basic bracket identity for a crossing flanked by virtual crossings as discussed in the previous

section. This calculation shows that V S is not a connected sum of two virtual knots. Thus we know that
V S is a non-trivial example of a virtual slice knot. We now can state the problem: Classify virtual
knots up to concordance. We will discuss this problem in this paper, but not solve it. The reader
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Heather Dye, Aaron Kaestner and LK, prove the 
following generalization of Rasmussen’s Theorem, 
giving the four-ball genus of a positive virtual knot.

The virtual Seifert surface for positive virtual K 
represents the minimal four-ball genus of K.

The Theorem is proved by generalizing both Khovanov 
and Lee homology to virtual knots and generalizing 

the Rasmussen invariant to virtual knots.



A classical invariant of knot concordance is the 
Arf invariant and the associated notion of pass

equivalence of classical knots.

Pass and Gamma Moves



Gamma Is Accomplished by Passing



Classical Spanning Surfaces simplify by passing bands. 
Every classical knot is pass equivalent to either a trefoil 
or an unknot. Trefoil and unknot are distinguished by the 

Arf invariant.



Ribbon Classical Knots are Pass equivalent to the Unknot



Virtual Band Passing
VKT +

~

P

~
G

~
G

Figure 37: Pass and Gamma Moves

can begin the investigation at that point. For these reasons, we believe that this formulation of virtual

cobordism an virtual surfaces will be very fruitful and lead to many new results.

5 Band-Passing

TheArf invariant of a classical knot can be interpreted as the pass-class of the knot, where two knots are

pass-equivalent [5] if one can be obtained from the other by ambient isotopy combined with switching

pairs of oppositely oriented pairs of parallel strands as illustrated in Figure 37. The pass-class is a

concordance invariant of classical knots and closely related to the Alexander polynomial. Any classical

knot is pass-equivalent to either the trefoil knot or the unknot. The trefoil is pass-equivalent to its mirror

image and is in a distinct pass-class from the unknot. The reader can get an idea of how this works for

classical knots by examining Figure 40 where we show hows a complicated surface (with boundary a

clasical knot) can be simplified by band-passing. See [5] for more information about classical band

passing.

We would like to determine the pass-classes of virtual knots. This problem appears difficult at this

time due the lack of invariants of the passing operation. We can obtain partial results by restricting

passing to only odd crossings (crossings with an odd interstice in the Gauss code) but this is only

a step on the way to understanding the pass equivalence relation for virtual knots. We expect that

understanding this relation will shed light on problems of knot concordance.

In Figure 37 we ilustrate pass-equivalence and also illustrate another move denoted by “G” in

that figure and we refer to this move as the gamma move. The gamma move, illustrated separately
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Classically there are two
pass classes for knots: Trefoil 

and Unknot.

What are the pass classes for 
virtual knots and links?



Note that the virtual
stevedore is Gamma equiv

to the unknot.

We will say that a virtual
knot is Gamma Trivial

if it is Gamma equivalent 
to the unknot.



The Kishino 
diagram gives a 

virtual knot
that is slice but it 

is not
Gamma trivial. 

Kishino is not pass 
trivial

since it is a non-trivial 
flat virtual knot. And its 
flat class IS its pass class 
since passing does not 

affect it as a flat.



[16], and Bar-Natan’s emphasis on tangle cobordisms [2]. We use similar considera-

tions in our paper [10].

Two key motivating ideas are involved in finding the Khovanov invariant. First

of all, one would like to categorify a link polynomial such as ⟨K⟩. There are many
meanings to the term categorify, but here the quest is to find a way to express the link

polynomial as a graded Euler characteristic ⟨K⟩ = χq⟨H(K)⟩ for some homology
theory associated with ⟨K⟩.

The bracket polynomial [7] model for the Jones polynomial [4, 5, 6, 17] is usually

described by the expansion

⟨ ⟩ = A⟨ ⟩ + A−1⟨ ⟩ (4)

and we have

⟨K ⃝⟩ = (−A2 − A−2)⟨K⟩ (5)

⟨ ⟩ = (−A3)⟨ ⟩ (6)

⟨ ⟩ = (−A−3)⟨ ⟩ (7)

Letting c(K) denote the number of crossings in the diagramK, if we replace ⟨K⟩
by A−c(K)⟨K⟩, and then replace A by −q−1, the bracket will be rewritten in the fol-
lowing form:

⟨ ⟩ = ⟨ ⟩ − q⟨ ⟩ (8)

with ⟨⃝⟩ = (q+q−1). It is useful to use this form of the bracket state sum for the sake
of the grading in the Khovanov homology (to be described below). We shall continue

to refer to the smoothings labeled q (or A−1 in the original bracket formulation) as

B-smoothings. We should further note that we use the well-known convention of en-
hanced states where an enhanced state has a label of 1 or X on each of its component

loops. We then regard the value of the loop q + q−1 as the sum of the value of a circle

labeled with a 1 (the value is q) added to the value of a circle labeled with an X (the

value is q−1).We could have chosen the more neutral labels of +1 and −1 so that

q+1 ⇐⇒ +1 ⇐⇒ 1

and

q−1 ⇐⇒ −1 ⇐⇒ X,

but, since an algebra involving 1 and X naturally appears later, we take this form of

labeling from the beginning.
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The Parity Bracket provides the simplest proof that 
the Kishino diagram is non-trivial.

Manturov Parity Bracket

Kishino
Knot

Parity bracket is calculated for virtuals and flat virtuals by replacing 
all odd crossings (odd interstice in Gauss code) with nodes. Then 

apply state sum with graphs (up to type two reducion) and 
polynomial coefficients. Kishino invariant is a single reduced 

diagram.



In flat Gauss code, two-moves require oppositely 
oriented parallel or crossed chords.



Reducing two-
moves

are not available 
on the flat 

Kishino diagram.



Here is another 
example of a flat with 

all odd crossings.
It is non trivial by 

parity bracket and it 
is its own pass class.



This Gauss code 
schema shows how 
to produce infinitely 

many distinct flat 
virtuals, each their 

own pass class. Thus 
there are infinitely 
many distinct pass 
classes for virtual 

knots.



Affine Index Polynomial
(See LK and Folwazcny and variants from 

Henrich,Cheng,Dye,...)







Index Invariant for Links





Virtual Borromean Rings



K’

K

Concordances are Composed of Elementary 
Concordances 

(Cancellation of Saddle and Max or Min)



Theorem.  P_K is a concordance invariant.
Proof. Concordances are compositions of 

elementary concordances.//



Theorem.  P_K is a concordance invariant.
Proof. Concordances are compositions of 

elementary concordances.//

A special concordance of links is DEFINED to be 
a composition of elementary concordances.

P_K is an invariant of special concordance for links 
that have an affine labeling.



A labeled
cobordism
of a knot 
to a link.



PK =t  + t - t  -1    2 -1



Hence, via P_K, K has genus one.



Virt(K)

P          = 0.Virt(K)

This one is not detected
by the Affine Index Poly.

How to prove it is not slice?



Thank you for your attention!


